scholarly journals Research on the Connection of Multi-scale Quadrilateral Finite Element Meshes

2019 ◽  
Vol 55 (9) ◽  
pp. 100 ◽  
Author(s):  
Xiwu FANG
1998 ◽  
Vol 14 (2) ◽  
pp. 168-177 ◽  
Author(s):  
S. A. Canann ◽  
S. N. Muthukrishnan ◽  
R. K. Phillips

1998 ◽  
Vol 15 (5) ◽  
pp. 577-587 ◽  
Author(s):  
S.B. Petersen ◽  
B.P.P.A. Gouveia ◽  
J.M.C. Rodrigues ◽  
P.A.F. Martins

2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Khallih Ahmed Blal ◽  
Brahim Allam ◽  
Zoubida Mghazli

AbstractWe are interested in the discretization of a diffusion problem with highly oscillating coefficient, by a multi-scale finite-element method (MsFEM). The objective of this method is to capture the multi-scale structure of the solution via local basis functions which contain the essential information on small scales. In this paper, we perform an a posteriori analysis of this discretization. The main result consists of building error indicators with respect to both small and large meshes used in this method. We present a numerical test in which the experiments are in good coherency with the results of analysis.


2015 ◽  
Vol 8 (4) ◽  
pp. 582-604
Author(s):  
Zhengqin Yu ◽  
Xiaoping Xie

AbstractThis paper proposes and analyzes semi-discrete and fully discrete hybrid stress finite element methods for elastodynamic problems. A hybrid stress quadrilateral finite element approximation is used in the space directions. A second-order center difference is adopted in the time direction for the fully discrete scheme. Error estimates of the two schemes, as well as a stability result for the fully discrete scheme, are derived. Numerical experiments are done to verify the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jeong-Hoon Song ◽  
Thomas Menouillard ◽  
Alireza Tabarraei

A numerical method for dynamic failure analysis through the phantom node method is further developed. A distinct feature of this method is the use of the phantom nodes with a newly developed correction force scheme. Through this improved approach, fracture energy can be smoothly dissipated during dynamic failure processes without emanating noisy artifact stress waves. This method is implemented to the standard 4-node quadrilateral finite element; a single quadrature rule is employed with an hourglass control scheme in order to decrease computational cost and circumvent difficulties associated with the subdomain integration schemes for cracked elements. The effectiveness and robustness of this method are demonstrated with several numerical examples. In these examples, we showed the effectiveness of the described correction force scheme along with the applicability of this method to an interesting class of structural dynamic failure problems.


Sign in / Sign up

Export Citation Format

Share Document