explicit dynamic
Recently Published Documents





2022 ◽  
Vol 12 (2) ◽  
pp. 779
Carlos Aurelio Andreucci ◽  
Abdullah Alshaya ◽  
Elza M. M. Fonseca ◽  
Renato N. Jorge

A new biomechanism, Bioactive Kinetic Screw (BKS) for screws and bone implants created by the first author, is presented using a bone dental implant screw, in which the bone particles, blood, cells, and protein molecules removed during bone drilling are used as a homogeneous autogenous transplant in the same implant site, aiming to obtain primary and secondary bone stability, simplifying the surgical procedure, and improving the healing process. The new BKS is based on complex geometry. In this work, we describe the growth factor (GF) delivery properties and the in situ optimization of the use of the GF in the fixation of bone screws through a dental implant. To describe the drilling process, an explicit dynamic numerical model was created, where the results show a significant impact of the drilling process on the bone material. The simulation demonstrates that the space occupied by the screw causes stress and deformation in the bone during the perforation and removal of the particulate bone, resulting in the accumulation of material removed within the implant screw, filling the limit hole of the drill grooves present on the new BKS.

Vinod Singh Thakur ◽  
Pavan Kumar Kankar ◽  
Anand Parey ◽  
Arpit Jain ◽  
Prashant Kumar Jain

This study aims to develop and analyse a finite element model of the endodontic nickel-titanium (NiTi) instrument during the root canal treatment (RCT). The 3D model of the tooth and the endodontic instrument has been created using computer-aided design software. The nonlinear explicit dynamic analysis in the CAE package (ANSYS) has been used to analyse the mechanical behaviour of endodontic instruments such as total deformation, equivalent elastic strain, and equivalent stress during canal preparation. The mechanical behaviour of three commercially available endodontic NiTi alloy instruments such as WaveOne Gold (WOG), 2Shape 1 (TS1) and 2Shape 2 (TS2) endodontic files was evaluated using FEA. Consequently, the effect of deformation, equivalent stress and equivalent elastic strain on endodontic files during cleaning and shaping are investigated and compared. The results show that the total deformation and equivalent elastic strain are maximum in the TS1 endodontic file in comparison to TS2 and WOG files. Graphical abstract [Formula: see text]

Yanwen Zhang ◽  
Jiaqi Che ◽  
Changlu Yu ◽  
Hanxiang Wang ◽  
Mingchao Du

At present, buckling pin in the bypass of piping as pressure relief valve has been gradually utilized in the low-concentration coal-bed methane (CBM), which bends to release pressure when the main valve fails leading to pipeline blockage. However, current researches mainly focused on the buckling behavior of hydraulic cylinder rod or rod string, and less consideration was given to the operational reliability of buckling pin valves. This paper deduced the calculation formula of the critical failure load based on Euler formula in the buckling pin under buckling load. Besides, three finite element models (FEM) based on Johnson−Cook constitutive model were compared to predict failure strength of buckling pin which were verified by experiment. In addition, the defect sensitivity analysis of the buckling pin under different initial geometric defects rate was carried out. The results showed that a) the experimental value of the critical failure load in the buckling pin was 206.04 N and the bending position was in the middle of the buckling pin; b) the analysis result adopting explicit dynamic method was in best agreement with the experimental results within deviation of 0.24%; and c) the initial geometric defect of buckling pin should be controlled within 1%. This study provides an important reference to predict the critical failure load of the buckling pin valve and achieve safe transportation of low-concentration CBM.

2022 ◽  
Vol 905 ◽  
pp. 3-8
Eser Yarar ◽  
Alpay Tamer Erturk

Surface mechanical attrition treatment enhances the mechanical properties of metallic materials by inducing high strength layer on the top surface. In this study, multiple-shot impact behavior was modeled for the 7075-T6 aluminum alloy to achieve maximum magnitudes of equivalent stress, plastic strain, residual stress depth, and residual stress. Finite element simulations have been carried out to investigate the effect of selected framework on stress and strains in constituent. The plastic deformation process during SMAT was analyzed using ANSYS/AUTODYN explicit dynamic solver according to shot velocity and diameter with a dynamic explicit finite element method (FEM). Deformation behavior was evaluated after multiple-shot impact.

2022 ◽  
Vol 355 ◽  
pp. 01010
Lihao Yang ◽  
Qi Zhang ◽  
Huafeng He ◽  
Yan Liu

In order to evaluate the impact of different warhead shapes on the damage efficiency of semi armour piercing warhead effectively, four common semi armour piercing warhead models are established based on Solidworks, and the deck model is established with reference to the deck data of an aircraft carrier. And then the material setting and grid division are carried out based on Ansys so as to construct the explicit dynamic simulation model. The credibility of the model is verified based on the residual velocity theory after the model being established. Finally, based on the established model, the simulation research on the influence of warhead shape on vertical armour piercing ability is carried out. The results show that under the same velocity, the armour piercing ability of sharp oval and conical warheads are better and their residual velocity are higher.

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 607
Vito Tateo ◽  
Siro Casolo

The development of artillery in Europe at the end of the Middle Ages brought a necessary change in military architecture. This change was a radical rethinking of the entire geometry and architectural design of city walls which required an increase in thickness to resist repeated artillery strikes. The damage due to the impact loads on Middle Age fortification walls is analyzed herein with explicit dynamic analyses. This study was developed both with finite element models and an innovative rigid body-spring model with diagonal springs (RBSM), showing the different peculiarities of these two different approaches and how their results can be integrated. The numerical models clearly showed that the presence of an inner core of softer material tends to modify the impact effects by reducing the degree of damage at the expense of an extension of the damaged area.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Chunlin Jiang ◽  
Yanhui Ge ◽  
Baoqun Wang ◽  
Luchen Zhang ◽  
Youbo Liu

Dynamic compaction machine (DCM) is a widely adopted ground reinforcement technology. However, dynamic compaction energy has a very significant impact on the surrounding environment. At present, the research on the impact of dynamic compaction mainly focuses on the effect of the tamping behavior of a single compactor in the working state, whereas the research on the impact of multiple compactors working jointly is rare. To study the impact of the dynamic compaction energy of multiple compactors working jointly on the surrounding environment, the dynamic response model for multiple compactors working in the same field was established based on the explicit dynamic analysis module in ABAQUS. The validity of the model was verified by comparison with the measured data. Based on this, the impact of the dynamic compaction energy of multiple compactors with different working conditions in terms of the arrangement, spacing, and working time interval was analyzed. The results showed that the arrangement and spacing of the compactors had a remarkable influence on the distribution of the dynamic compaction energy in the surrounding environment. Under the condition of multiple compactors working with a time interval of less than 10 s, the impact of the superimposed dynamic compaction energy due to the interaction of multiple compactors had to be considered.

CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 969-985
Demiana Tse ◽  
João M. Pereira ◽  
Paulo B. Lourenço

Historic monuments and construction capture the knowledge of civilizations of the past and are a source of pride for people of the present. Over the centuries, these buildings have been at risk from natural and man-made causes. The Alhambra, a UNESCO World Heritage Site in Granada, Spain, is one of such places. This paper aims to evaluate the structural performance of the Torre de la Vela, a tower in the Alhambra, under blast loads. The loads were based on historical records of barrels of gunpowder and were modeled as simplified pressure profiles using existing empirical equations. The effect of impulsive loading on the material properties was accounted for using dynamic increase factors, determined experimentally by previous authors. The model was created using finite element methods (FEM) and the problem was solved using explicit dynamic analysis available in Abaqus/Explicit. Using the failure volume damage index, a blast load applied outside and inside of the building would create a low damage level, which should be treated with caution given the occurrence of localized damage. The removal of elements exceeding a given damage threshold led to more visible damage patterns than the Concrete Tension Damage option in Abaqus.

Sign in / Sign up

Export Citation Format

Share Document