Looking for the best compromise in rapid food mycotoxin tests: speed, sensitivity, precision and accuracy

2014 ◽  
Vol 7 (4) ◽  
pp. 407-415 ◽  
Author(s):  
A.J. Alldrick

Mycotoxins provide additional challenges to food businesses in terms of successful management of food-safety management systems. These reflect, in part, an unusually high dependency on the activities of others in the supply chain to ensure that levels of contamination remain within set limits. Consequently analyses for mycotoxins by food businesses are primarily commissioned for one or a combination of two reasons: to determine compliance with regulatory or commercial standards or; as part of an exercise to verify the efficacy of the businesses foodsafety management systems. Given the regulatory/commercial implications, the standard of evidence needed to demonstrate (non)compliance will be the greater than that needed for simple verification. Consequently, decisions relating to matters of regulatory or commercial arbitration need to be based on agreed and well defined methods of analysis, which are normally laboratory-based. These data are also often sufficient to be used to verify foodsafety management systems. However, supply conditions may predicate the need for increased levels of verification and rapid mycotoxin test-kits have the potential to both meet this need and satisfy the requirements of statistical process control. Nevertheless, it is important to note that deployment of such test-kits cannot be considered to be a ‘turnkey’ exercise and that, as in the case of laboratory-based assays, care must be taken in the validation and subsequent verification of their use for a given material being used within a food business. In particular, this means demonstrating under local conditions that results from the use of these test-kits are comparable to those that would be obtained using official or reference methods.

2021 ◽  
Author(s):  
Toni Wäfler ◽  
Rahel Gugerli ◽  
Giulio Nisoli

We all aim for safe processes. However, providing safety is a complex endeavour. What is it that makes a process safe? And what is the contribution of humans? It is very common to consider humans a risk factor prone to errors. Therefore, we implement sophisticated safety management systems (SMS) in order to prevent potential "human failure". These SMS provide an impressive increase of safety. In safety science this approach is labelled "Safety-I", and it starts to be questioned because humans do not show failures only. On the contrary, they often actively contribute to safety, sometimes even by deviating from a procedure. This "Safety-II" perspective considers humans to be a "safety factor" as well because of their ability to adjust behaviour to the given situation. However, adaptability requires scope of action and this is where Safety-I and Safety-II contradict each other. While the former restricts freedom of action, the latter requires room for manoeuvring. Thus, the task of integrating the Safety-II perspective into SMS, which are traditionally Safety-I based, is difficult. This challenge was the main objective of our project. We discovered two methods that contribute to the quality of SMS by integrating Safety-II into SMS without jeopardizing the Safety-I approach.


Sign in / Sign up

Export Citation Format

Share Document