Application of Homotopy Perturbation Method to Solve Linear and Non-Linear Systems of Ordinary Differential Equations and Differential Equation of Order Three

2008 ◽  
Vol 8 (7) ◽  
pp. 1256-1261 ◽  
Author(s):  
D.D. Ganji . ◽  
H. Mirgolbabaei . ◽  
Me. Miansari . ◽  
Mo. Miansari .
2008 ◽  
Vol 63 (1-2) ◽  
pp. 19-23 ◽  
Author(s):  
Mohammad Taghi Darvishi ◽  
Farzad Khani

We propose He’s homotopy perturbation method (HPM) to solve stiff systems of ordinary differential equations. This method is very simple to be implemented. HPM is employed to compute an approximation or analytical solution of the stiff systems of linear and nonlinear ordinary differential equations.


Nova Scientia ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 13 ◽  
Author(s):  
Umberto Filobello-Nino ◽  
Héctor Vázquez-Leal ◽  
Yasir Khan ◽  
D. Pereyra-Díaz ◽  
A. Pérez-Sesma ◽  
...  

In this article, modified non-linearities distribution homotopy perturbation method (MNDHPM) is used in order to find power series solutions to ordinary differential equations with initial conditions, both linear and nonlinear. We will see that the method is particularly relevant in some cases of equations with non-polynomial coefficients and inhomogeneous non-polynomial terms


2020 ◽  
Vol 18 (2) ◽  
pp. 113-121
Author(s):  
A. El Harfouf ◽  
A. Wakif ◽  
S. Hayani Mounir

In this current work, the heat transfer analysis for the unsteady squeezing magnetohydrodynamic flow of a viscous nanofluid between two parallel plates in the presence of thermal radiation, viscous and magnetic dissipations impacts, considering Fourier heat flux model have been explored. The partial differential equations representing flow model are reduced to nonlinear ordinary differential equations by introducing a similarity transformation. The dimensionless and nonlinear ordinary differential equations of the velocity and temperatures functions obtained are solved by employing the homotopy perturbation method. The effects of different parameters on the velocity and temperature profiles are examined graphically, and numerical calculations for the skin friction coefficient and local Nusselt number are tabulated. It is found an excellent agreement in the comparative study with literature results. This present numerical exploration has great relevance, consequently a better understanding of the squeezing flow phenomena in the hydraulic lifts, power transmission, nano gastric tubes, reactor fluidization areas.


Sign in / Sign up

Export Citation Format

Share Document