power series solutions
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 3)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2434
Author(s):  
Ruixin Li ◽  
Lianzhong Li

In this paper, we employ the certain theory of Lie symmetry analysis to discuss the time-fractional Gardner equation with time-dependent coefficients. The Lie point symmetry is applied to realize the symmetry reduction of the equation, and then the power series solutions in some specific cases are obtained. By virtue of the fractional conservation theorem, the conservation laws are constructed.


Author(s):  
Shou-Fu Tian ◽  
Mei-Juan Xu ◽  
Tian-Tian Zhang

Under investigation in this work is a generalized higher-order beam equation, which is an important physical model and describes the vibrations of a rod. By considering Lie symmetry analysis, and using the power series method, we derive the geometric vector fields, symmetry reductions, group invariant solutions and power series solutions of the equation, respectively. The convergence analysis of the power series solutions are also provided with detailed proof. Furthermore, by virtue of the multipliers, the local conservation laws of the equation are derived as well. Furthermore, an effective and direct approach is proposed to study the symmetry-preserving discretization for the equation via its potential system. Finally, the invariant difference models of the generalized beam equation are successfully constructed. Our results show that it is very useful to construct the difference models of the potential system instead of the original equation.


2021 ◽  
pp. 104591
Author(s):  
Hira Tariq ◽  
Hijaz Ahmed ◽  
Hadi Rezazadeh ◽  
Shumaila Javeed ◽  
Khurram Saleem Alimgeer ◽  
...  

Lane-Emden equation is also of fundamental importance in mathematical physics, celestial mechanics,and computer science. It can be used to describe stellar structures, equilibrium density distribution in polytrophicisothermal gas, thermal behavior in mutual attraction of its molecules. An improved numerical method is developed for solving Lane-Emden type differential equations. The method is based on power series solutions of differential equations and Maclaurin series expansion. A python program is written to carry out numerical calculations. Five examples are solved and shown in this paper, the solutions obtained by the program are compared with the exact solutions of differential equation, an excellent agreement is found between them. The present method improves runtime.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Selahattin Gülşen ◽  
Shao-Wen Yao ◽  
Mustafa Inc

In this work, we investigate invariance analysis, conservation laws, and exact power series solutions of time fractional generalized Drinfeld–Sokolov systems (GDSS) using Lie group analysis. Using Lie point symmetries and the Erdelyi–Kober (EK) fractional differential operator, the time fractional GDSS equation is reduced to a nonlinear ordinary differential equation (ODE) of fractional order. Moreover, we have constructed conservation laws for time fractional GDSS and obtained explicit power series solutions of the reduced nonlinear ODEs that converge. Lastly, some figures are presented for explicit solutions.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2247
Author(s):  
Weam Alharbi ◽  
Sergei Petrovskii

The fractional calculus is useful in describing the natural phenomena with memory effect. This paper addresses the fractional form of Ambartsumian equation with a delay parameter. It may be a challenge to obtain accurate approximate solution of such kinds of fractional delay equations. In the literature, several attempts have been conducted to analyze the fractional Ambartsumian equation. However, the previous approaches in the literature led to approximate power series solutions which converge in subdomains. Such difficulties are solved in this paper via the Homotopy Perturbation Method (HPM). The present approximations are expressed in terms of the Mittag-Leffler functions which converge in the whole domain of the studied model. The convergence issue is also addressed. Several comparisons with the previous published results are discussed. In particular, while the computed solution in the literature is physical in short domains, with our approach it is physical in the whole domain. The results reveal that the HPM is an effective tool to analyzing the fractional Ambartsumian equation.


2020 ◽  
pp. 2150074
Author(s):  
Panpan Wang ◽  
Wenrui Shan ◽  
Ying Wang ◽  
Qianqian Li

In this paper, we mainly study the symmetry analysis and conservation laws of the time fractional Clannish Random Walker’s Parabolic (CRWP) equation. The vector fields and similarity reduction of the time fractional CRWP equation are obtained. In addition, based on the power series theory, a simple and effective approach for constructing explicit power series solutions is proposed. Finally, by use of the new conservation theorem, the conservation laws of the time fractional CRWP equation are constructed.


Sign in / Sign up

Export Citation Format

Share Document