scholarly journals Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp

2017 ◽  
Vol 16 (6) ◽  
pp. 2321-2336
Author(s):  
Jihua Yang ◽  
◽  
Erli Zhang ◽  
Mei Liu ◽  
2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550176 ◽  
Author(s):  
Feng Liang ◽  
Junmin Yang

In this paper, we deal with limit cycle bifurcations by perturbing a piecewise smooth Hamiltonian system with a generalized homoclinic loop passing through a nonelementary singular point. We first give an expansion of the first Melnikov function corresponding to a period annulus near the generalized homoclinic loop. Then, based on the first coefficients in the expansion we obtain a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950160
Author(s):  
Zhihui Fan ◽  
Zhengdong Du

In this paper, we discuss the bifurcation of periodic orbits in planar piecewise smooth systems with discontinuities on finitely many smooth curves intersecting at the origin. We assume that the unperturbed system has either a limit cycle or a periodic annulus such that the limit cycle or each periodic orbit in the periodic annulus crosses every switching curve transversally multiple times. When the unperturbed system has a limit cycle, we give the conditions for its stability and persistence. When the unperturbed system has a periodic annulus, we obtain the expression of the first order Melnikov function and establish sufficient conditions under which limit cycles can bifurcate from the annulus. As an example, we construct a concrete nonlinear planar piecewise smooth system with three zones with 11 limit cycles bifurcated from the periodic annulus.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850096 ◽  
Author(s):  
Hongying Zhu ◽  
Bin Qin ◽  
Sumin Yang ◽  
Minzhi Wei

In this paper, we study the Poincaré bifurcation of a nonlinear oscillator of generalized Liénard type by using the Melnikov function. The oscillator has weak damping terms. When the damping terms vanish, the oscillator has a heteroclinic loop connecting a nilpotent cusp to a hyperbolic saddle. Our results reveal that: (i) the oscillator can have at most four limit cycles bifurcating from the corresponding period annulus. (ii) There are some parameters such that three limit cycles emerge in the original periodic orbit domain. (iii) Especially, we give a rigorous proof that [Formula: see text] limit cycle(s) can emerge near the original singular loop and [Formula: see text] limit cycle(s) can emerge near the original elementary center with [Formula: see text].


2020 ◽  
Vol 30 (09) ◽  
pp. 2050126
Author(s):  
Li Zhang ◽  
Chenchen Wang ◽  
Zhaoping Hu

From [Han et al., 2009a] we know that the highest order of the nilpotent center of cubic Hamiltonian system is [Formula: see text]. In this paper, perturbing the Hamiltonian system which has a nilpotent center of order [Formula: see text] at the origin by cubic polynomials, we study the number of limit cycles of the corresponding cubic near-Hamiltonian systems near the origin. We prove that we can find seven and at most seven limit cycles near the origin by the first-order Melnikov function.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.


Sign in / Sign up

Export Citation Format

Share Document