scholarly journals Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center

2008 ◽  
Vol 22 (1/2, September) ◽  
pp. 75-88 ◽  
Author(s):  
Raúl Ures ◽  
Anna Talitskaya ◽  
María Hertz ◽  
Federico Hertz ◽  
Keith Burns
2008 ◽  
Vol 28 (3) ◽  
pp. 843-862 ◽  
Author(s):  
YONGXIA HUA ◽  
RADU SAGHIN ◽  
ZHIHONG XIA

AbstractWe consider partially hyperbolic diffeomorphisms on compact manifolds. We define the notion of the unstable and stable foliations stably carrying some unique non-trivial homologies. Under this topological assumption, we prove the following two results: if the center foliation is one-dimensional, then the topological entropy is locally a constant; and if the center foliation is two-dimensional, then the topological entropy is continuous on the set of all $C^{\infty }$ diffeomorphisms. The proof uses a topological invariant we introduced, Yomdin’s theorem on upper semi-continuity, Katok’s theorem on lower semi-continuity for two-dimensional systems, and a refined Pesin–Ruelle inequality we proved for partially hyperbolic diffeomorphisms.


2021 ◽  
Vol 17 (0) ◽  
pp. 557
Author(s):  
Jinhua Zhang

<p style='text-indent:20px;'>We prove that for any partially hyperbolic diffeomorphism having neutral center behavior on a 3-manifold, the center stable and center unstable foliations are complete; moreover, each leaf of center stable and center unstable foliations is a cylinder, a Möbius band or a plane.</p><p style='text-indent:20px;'>Further properties of the Bonatti–Parwani–Potrie type of examples of of partially hyperbolic diffeomorphisms are studied. These are obtained by composing the time <inline-formula><tex-math id="M1">\begin{document}$ m $\end{document}</tex-math></inline-formula>-map (for <inline-formula><tex-math id="M2">\begin{document}$ m&gt;0 $\end{document}</tex-math></inline-formula> large) of a non-transitive Anosov flow <inline-formula><tex-math id="M3">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula> on an orientable 3-manifold with Dehn twists along some transverse tori, and the examples are partially hyperbolic with one-dimensional neutral center. We prove that the center foliation is given by a topological Anosov flow which is topologically equivalent to <inline-formula><tex-math id="M4">\begin{document}$ \phi_t $\end{document}</tex-math></inline-formula>. We also prove that for the original example constructed by Bonatti–Parwani–Potrie, the center stable and center unstable foliations are robustly complete.</p>


2019 ◽  
Vol 20 (02) ◽  
pp. 2050014
Author(s):  
Zeya Mi

We study the local entropy of typical infinite Bowen balls in random dynamical systems, and show the random entropy expansiveness for [Formula: see text] partially hyperbolic diffeomorphisms with multi one-dimensional centers. Moreover, we consider [Formula: see text] diffeomorphism [Formula: see text] with dominated splitting [Formula: see text] such that [Formula: see text] for every [Formula: see text], and all the Lyapunov exponents are non-negative along [Formula: see text] and non-positive along [Formula: see text], we prove the asymptotically random entropy expansiveness for [Formula: see text].


2021 ◽  
pp. 1-54
Author(s):  
A. AVILA ◽  
MARCELO VIANA ◽  
A. WILKINSON

Abstract We explore new connections between the dynamics of conservative partially hyperbolic systems and the geometric measure-theoretic properties of their invariant foliations. Our methods are applied to two main classes of volume-preserving diffeomorphisms: fibered partially hyperbolic diffeomorphisms and center-fixing partially hyperbolic systems. When the center is one-dimensional, assuming the diffeomorphism is accessible, we prove that the disintegration of the volume measure along the center foliation is either atomic or Lebesgue. Moreover, the latter case is rigid in dimension three (this does not require accessibility): the center foliation is actually smooth and the diffeomorphism is smoothly conjugate to an explicit rigid model. A partial extension to fibered partially hyperbolic systems with compact fibers of any dimension is also obtained. A common feature of these classes of diffeomorphisms is that the center leaves either are compact or can be made compact by taking an appropriate dynamically defined quotient. For volume-preserving partially hyperbolic diffeomorphisms whose center foliation is absolutely continuous, if the generic center leaf is a circle, then every center leaf is compact.


2020 ◽  
pp. 1-17
Author(s):  
THOMAS BARTHELMÉ ◽  
SERGIO R. FENLEY ◽  
STEVEN FRANKEL ◽  
RAFAEL POTRIE

Abstract We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends [C. Bonatti, A. Gogolev, A. Hammerlindl and R. Potrie. Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence. Geom. Topol., to appear] to the whole isotopy class. We relate the techniques to the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in [T. Barthelmé, S. Fenley, S. Frankel and R. Potrie. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part I: The dynamically coherent case. Preprint, 2019, arXiv:1908.06227; Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, part II: Branching foliations. Preprint, 2020, arXiv: 2008.04871]. The appendix reviews some consequences of the Nielsen–Thurston classification of surface homeomorphisms for the dynamics of lifts of such maps to the universal cover.


2014 ◽  
Vol 35 (2) ◽  
pp. 412-430 ◽  
Author(s):  
HUYI HU ◽  
YUNHUA ZHOU ◽  
YUJUN ZHU

AbstractA partially hyperbolic diffeomorphism $f$ has the quasi-shadowing property if for any pseudo orbit $\{x_{k}\}_{k\in \mathbb{Z}}$, there is a sequence of points $\{y_{k}\}_{k\in \mathbb{Z}}$ tracing it in which $y_{k+1}$ is obtained from $f(y_{k})$ by a motion ${\it\tau}$ along the center direction. We show that any partially hyperbolic diffeomorphism has the quasi-shadowing property, and if $f$ has a $C^{1}$ center foliation then we can require ${\it\tau}$ to move the points along the center foliation. As applications, we show that any partially hyperbolic diffeomorphism is topologically quasi-stable under $C^{0}$-perturbation. When $f$ has a uniformly compact $C^{1}$ center foliation, we also give partially hyperbolic diffeomorphism versions of some theorems which hold for uniformly hyperbolic systems, such as the Anosov closing lemma, the cloud lemma and the spectral decomposition theorem.


2016 ◽  
Vol 38 (1) ◽  
pp. 384-400 ◽  
Author(s):  
RAÚL URES ◽  
CARLOS H. VÁSQUEZ

It is well known that it is possible to construct a partially hyperbolic diffeomorphism on the 3-torus in a similar way to Kan’s example. It has two hyperbolic physical measures with intermingled basins supported on two embedded tori with Anosov dynamics. A natural question is how robust is the intermingled basin phenomenon for diffeomorphisms defined on boundaryless manifolds? In this work we study partially hyperbolic diffeomorphisms on the 3-torus and show that the intermingled basin phenomenon is not robust.


Sign in / Sign up

Export Citation Format

Share Document