scholarly journals Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group

2017 ◽  
Vol 22 (9) ◽  
pp. 3459-3481 ◽  
Author(s):  
Vincenzo Michael Isaia ◽  
2020 ◽  
Vol 17 (04) ◽  
pp. 727-763
Author(s):  
Anudeep Kumar Arora ◽  
Svetlana Roudenko

We study the generalized Hartree equation, which is a nonlinear Schrödinger-type equation with a nonlocal potential [Formula: see text]. We establish the local well-posedness at the nonconserved critical regularity [Formula: see text] for [Formula: see text], which also includes the energy-supercritical regime [Formula: see text] (thus, complementing the work in [A. K. Arora and S. Roudenko, Global behavior of solutions to the focusing generalized Hartree equation, Michigan Math J., forthcoming], where we obtained the [Formula: see text] well-posedness in the intercritical regime together with classification of solutions under the mass–energy threshold). We next extend the local theory to global: for small data we obtain global in time existence and for initial data with positive energy and certain size of variance we show the finite time blow-up (blow-up criterion). In the intercritical setting the criterion produces blow-up solutions with the initial values above the mass–energy threshold. We conclude with examples showing currently known thresholds for global vs. finite time behavior.


2000 ◽  
Vol 25 (3) ◽  
pp. 476-484 ◽  
Author(s):  
Andreas Nolte ◽  
Rainer Schrader

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Mabrouk Benhamou

Diffusion-reaction phenomena are generally described by parabolic differential equations (PDEs), and I am interested in those possessing solutions that fail at large time. A sophisticated method to study the large-time behavior is the Renormalization Group usually encountered in Particles-Physics and Critical Phenomena. In this paper, I review the application of such an approach. In particular, attention is paid to Quantum Field Theory techniques used for the extraction of the asymptotic solutions to PDEs. Finally, I extend discussion to the fractional-time PDEs and with noise.


Sign in / Sign up

Export Citation Format

Share Document