scholarly journals Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in \begin{document}$ \mathbb R^N $\end{document}\begin{document}$ ^\diamondsuit $\end{document}

2018 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ziqing Yuan ◽  
◽  
Jianshe Yu ◽  
Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 107
Author(s):  
Daliang Zhao ◽  
Juan Mao

In this paper, sufficient conditions ensuring existence and multiplicity of positive solutions for a class of nonlinear singular fractional differential systems are derived with Riemann–Stieltjes coupled integral boundary value conditions in Banach Spaces. Nonlinear functions f(t,u,v) and g(t,u,v) in the considered systems are allowed to be singular at every variable. The boundary conditions here are coupled forms with Riemann–Stieltjes integrals. In order to overcome the difficulties arising from the singularity, a suitable cone is constructed through the properties of Green’s functions associated with the systems. The main tool used in the present paper is the fixed point theorem on cone. Lastly, an example is offered to show the effectiveness of our obtained new results.


Author(s):  
Riccardo Molle ◽  
Donato Passaseo

AbstractThe paper deals with the equation $$-\Delta u+a(x) u =|u|^{p-1}u $$ - Δ u + a ( x ) u = | u | p - 1 u , $$u \in H^1({\mathbb {R}}^N)$$ u ∈ H 1 ( R N ) , with $$N\ge 2$$ N ≥ 2 , $$p> 1,\ p< {N+2\over N-2}$$ p > 1 , p < N + 2 N - 2 if $$N\ge 3$$ N ≥ 3 , $$a\in L^{N/2}_{loc}({\mathbb {R}}^N)$$ a ∈ L loc N / 2 ( R N ) , $$\inf a> 0$$ inf a > 0 , $$\lim _{|x| \rightarrow \infty } a(x)= a_\infty $$ lim | x | → ∞ a ( x ) = a ∞ . Assuming that the potential a(x) satisfies $$\lim _{|x| \rightarrow \infty }[a(x)-a_\infty ] e^{\eta |x|}= \infty \ \ \forall \eta > 0$$ lim | x | → ∞ [ a ( x ) - a ∞ ] e η | x | = ∞ ∀ η > 0 , $$ \lim _{\rho \rightarrow \infty } \sup \left\{ a(\rho \theta _1) - a(\rho \theta _2) \ :\ \theta _1, \theta _2 \in {\mathbb {R}}^N,\ |\theta _1|= |\theta _2|=1 \right\} e^{\tilde{\eta }\rho } = 0 \quad \text{ for } \text{ some } \ \tilde{\eta }> 0$$ lim ρ → ∞ sup a ( ρ θ 1 ) - a ( ρ θ 2 ) : θ 1 , θ 2 ∈ R N , | θ 1 | = | θ 2 | = 1 e η ~ ρ = 0 for some η ~ > 0 and other technical conditions, but not requiring any symmetry, the existence of infinitely many positive multi-bump solutions is proved. This result considerably improves those of previous papers because we do not require that a(x) has radial symmetry, or that $$N=2$$ N = 2 , or that $$|a(x)-a_\infty |$$ | a ( x ) - a ∞ | is uniformly small in $${\mathbb {R}}^N$$ R N , etc. ....


Sign in / Sign up

Export Citation Format

Share Document