scholarly journals Application of Musical Information Retrieval (MIR) Techniques to Seismic Facies Classification. Examples in Hydrocarbon Exploration

2016 ◽  
Vol 2 (4) ◽  
pp. 413-425 ◽  
Author(s):  
Paolo Dell’Aversana ◽  
◽  
Gianluca Gabbriellini ◽  
Alfonso Iunio Marini ◽  
Alfonso Amendola
Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. O47-O58 ◽  
Author(s):  
Mingliang Liu ◽  
Michael Jervis ◽  
Weichang Li ◽  
Philippe Nivlet

Mapping of seismic and lithologic facies from 3D reflection seismic data plays a key role in depositional environment analysis and reservoir characterization during hydrocarbon exploration and development. Although a variety of machine-learning methods have been developed to speed up interpretation and improve prediction accuracy, there still exist significant challenges in 3D multiclass seismic facies classification in practice. Some of these limitations include complex data representation, limited training data with labels, imbalanced facies class distribution, and lack of rigorous performance evaluation metrics. To overcome these challenges, we have developed a supervised convolutional neural network (CNN) and a semisupervised generative adversarial network (GAN) for 3D seismic facies classification in situations with sufficient and limited well data, respectively. The proposed models can predict 3D facies distribution based on actual well log data and core analysis, or other prior geologic knowledge. Therefore, they provide a more consistent and meaningful implication to seismic interpretation than commonly used unsupervised approaches. The two deep neural networks have been tested successfully on a realistic synthetic case based on an existing reservoir and a real case study of the F3 seismic data from the Dutch sector of the North Sea. The prediction results show that, with relatively abundant well data, the supervised CNN-based learning method has a good ability in feature learning from seismic data and accurately recovering the 3D facies model, whereas the semisupervised GAN is effective in avoiding overfitting in the case of extremely limited well data. The latter seems, therefore, particularly adapted to exploration or early field development stages in which labeled data from wells are still very scarce.


2014 ◽  
Vol 2 (1) ◽  
pp. SA31-SA47 ◽  
Author(s):  
Atish Roy ◽  
Araceli S. Romero-Peláez ◽  
Tim J. Kwiatkowski ◽  
Kurt J. Marfurt

Seismic facies estimation is a critical component in understanding the stratigraphy and lithology of hydrocarbon reservoirs. With the adoption of 3D technology and increasing survey size, manual techniques of facies classification have become increasingly time consuming. Besides, the numbers of seismic attributes have increased dramatically, providing increasingly accurate measurements of reflector morphology. However, these seismic attributes add multiple “dimensions” to the data greatly expanding the amount of data to be analyzed. Principal component analysis and self-organizing maps (SOMs) are popular techniques to reduce such dimensionality by projecting the data onto a lower order space in which clusters can be more readily identified and interpreted. After dimensional reduction, popular classification algorithms such as neural net, K-means, and Kohonen SOMs are routinely done for general well log prediction or analysis and seismic facies modeling. Although these clustering methods have been successful in many hydrocarbon exploration projects, they have some inherent limitations. We explored one of the recent techniques known as generative topographic mapping (GTM), which takes care of the shortcomings of Kohonen SOMs and helps in data classification. We applied GTM to perform multiattribute seismic facies classification of a carbonate conglomerate oil field in the Veracruz Basin of southern Mexico. The presence of conglomerate carbonates makes the reservoir units laterally and vertically highly heterogeneous, which are observed at well logs, core slabs, and thin section scales. We applied unsupervised GTM classification to determine the “natural” clusters in the data set. Finally, we introduced supervision into GTM and calculated the probability of occurrence of seismic facies seen at the wells over the reservoir units. In this manner, we were able to assign a level of confidence (or risk) to encountering facies that corresponded to good and poor production.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. W1-W13 ◽  
Author(s):  
Dengliang Gao

In exploration geology and geophysics, seismic texture is still a developing concept that has not been sufficiently known, although quite a number of different algorithms have been published in the literature. This paper provides a review of the seismic texture concepts and methodologies, focusing on latest developments in seismic amplitude texture analysis, with particular reference to the gray level co-occurrence matrix (GLCM) and the texture model regression (TMR) methods. The GLCM method evaluates spatial arrangements of amplitude samples within an analysis window using a matrix (a two-dimensional histogram) of amplitude co-occurrence. The matrix is then transformed into a suite of texture attributes, such as homogeneity, contrast, and randomness, which provide the basis for seismic facies classification. The TMR method uses a texture model as reference to discriminate among seismic features based on a linear, least-squares regression analysis between the model and the data within an analysis window. By implementing customized texture model schemes, the TMR algorithm has the flexibility to characterize subsurface geology for different purposes. A texture model with a constant phase is effective at enhancing the visibility of seismic structural fabrics, a texture model with a variable phase is helpful for visualizing seismic facies, and a texture model with variable amplitude, frequency, and size is instrumental in calibrating seismic to reservoir properties. Preliminary test case studies in the very recent past have indicated that the latest developments in seismic texture analysis have added to the existing amplitude interpretation theories and methodologies. These and future developments in seismic texture theory and methodologies will hopefully lead to a better understanding of the geologic implications of the seismic texture concept and to an improved geologic interpretation of reflection seismic amplitude.


Author(s):  
Xingye Liu ◽  
Bin Li ◽  
Jingye Li ◽  
Xiaohong Chen ◽  
Qingchun Li ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
pp. SLi-SLi
Author(s):  
Dario Grana ◽  
Lisa Stright ◽  
Patrick Connolly ◽  
Mario Gutierrez ◽  
Ezequiel Gonzalez ◽  
...  

2021 ◽  
Vol 73 (02) ◽  
pp. 68-69
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200577, “Applications of Artificial Neural Networks for Seismic Facies Classification: A Case Study From the Mid-Cretaceous Reservoir in a Supergiant Oil Field,” by Ali Al-Ali, Karl Stephen, SPE, and Asghar Shams, Heriot-Watt University, prepared for the 2020 SPE Europec featured at the 82nd EAGE Conference and Exhibition, originally scheduled to be held in Amsterdam, 1-3 December. The paper has not been peer reviewed. Facies classification using data from sources such as wells and outcrops cannot capture all reservoir characterization in the interwell region. Therefore, as an alternative approach, seismic facies classification schemes are applied to reduce the uncertainties in the reservoir model. In this study, a machine-learning neural network was introduced to predict the lithology required for building a full-field Earth model for carbonate reservoirs in southern Iraq. The work and the methodology provide a significant improvement in facies classification and reveal the capability of a probabilistic neural network technique. Introduction The use of machine learning in seismic facies classification has increased gradually during the past decade in the interpretation of 3D and 4D seismic volumes and reservoir characterization work flows. The complete paper provides a literature review regarding this topic. Previously, seismic reservoir characterization has revealed the heterogeneity of the Mishrif reservoir and its distribution in terms of the pore system and the structural model. However, the main objective of this work is to classify and predict the heterogeneous facies of the carbonate Mishrif reservoir in a giant oil field using a multilayer feed-forward network (MLFN) and a probabilistic neural network (PNN) in nonlinear facies classification techniques. A related objective was to find any domain-specific causal relationships among input and output variables. These two methods have been applied to classify and predict the presence of different facies in Mishrif reservoir rock types. Case Study Reservoir and Data Set Description. The West Qurna field is a giant, multibillion-barrel oil field in the southern Mesopotamian Basin with multiple carbonate and clastic reservoirs. The overall structure of the field is a north/south trending anticline steep on the western flank and gentle on the eastern flank. Many producing reservoirs developed in this oil field; however, the Mid- Cretaceous Mishrif reservoir is the main producing reservoir. The reservoir consists of thick carbonate strata (roughly 250 m) deposited on a shallow water platform adjacent to more-distal, deeper-water nonreservoir carbonate facies developing into three stratigraphic sequence units in the second order. Mishrif facies are characterized by a porosity greater than 20% and large permeability contrast from grainstones to microporosity (10-1000 md). The first full-field 3D seismic data set was achieved over 500 km2 during 2012 and 2013 in order to plan the development of all field reservoirs. A de-tailed description of the reservoir has been determined from well logs and core and seismic data. This study is mainly based on facies log (22 wells) and high-resolution 3D seismic volume to generate seismic attributes as the input data for the training of the neural network model. The model is used to evaluate lithofacies in wells without core data but with appropriate facies logs. Also, testing was carried out in parallel with the core data to verify the results of facies classification.


Sign in / Sign up

Export Citation Format

Share Document