Using relative geologic time to constrain seismic facies classification using neural networks

Author(s):  
Haibin Di ◽  
Zhun Li ◽  
Aria Abubakar
2021 ◽  
pp. 1-105
Author(s):  
Diana Salazar Florez ◽  
Heather Bedle

Nowadays, there are many unsupervised and supervised machine learning techniques available for performing seismic facies classification. However, those classification methods either demand high computational costs or do not provide an accurate measure of confidence. Probabilistic neural networks (PNNs) overcome these limitations and have demonstrated their superiority among other algorithms. PNNs have been extensively applied for some prediction tasks, but not well studied regarding the prediction of seismic facies volumes using seismic attributes. We explore the capability of the PNN algorithm when classifying large- and small-scale seismic facies. Additionally, we evaluate the impact of user-chosen parameters on the final classification volumes. After performing seven tests, each with a parameter variation, we assess the impact of the parameter change on the resultant classification volumes. We show that the processing task can have a significant impact on the classification volumes, but also how the most geologically complex areas are the most challenging for the algorithm. Moreover, we demonstrate that even if the PNN technique is performing and producing considerably accurate results, it is possible to overcome those limitations and significantly improve the final classification volumes by including the geological insight provided by the geoscientist. We conclude by proposing a new workflow that can guide future geoscientists interested in applying PNNs, to obtain better seismic facies classification volumes by considering some initial steps and advice.


2002 ◽  
Vol 21 (10) ◽  
pp. 1042-1049 ◽  
Author(s):  
Brian P. West ◽  
Steve R. May ◽  
John E. Eastwood ◽  
Christine Rossen

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. O47-O58 ◽  
Author(s):  
Mingliang Liu ◽  
Michael Jervis ◽  
Weichang Li ◽  
Philippe Nivlet

Mapping of seismic and lithologic facies from 3D reflection seismic data plays a key role in depositional environment analysis and reservoir characterization during hydrocarbon exploration and development. Although a variety of machine-learning methods have been developed to speed up interpretation and improve prediction accuracy, there still exist significant challenges in 3D multiclass seismic facies classification in practice. Some of these limitations include complex data representation, limited training data with labels, imbalanced facies class distribution, and lack of rigorous performance evaluation metrics. To overcome these challenges, we have developed a supervised convolutional neural network (CNN) and a semisupervised generative adversarial network (GAN) for 3D seismic facies classification in situations with sufficient and limited well data, respectively. The proposed models can predict 3D facies distribution based on actual well log data and core analysis, or other prior geologic knowledge. Therefore, they provide a more consistent and meaningful implication to seismic interpretation than commonly used unsupervised approaches. The two deep neural networks have been tested successfully on a realistic synthetic case based on an existing reservoir and a real case study of the F3 seismic data from the Dutch sector of the North Sea. The prediction results show that, with relatively abundant well data, the supervised CNN-based learning method has a good ability in feature learning from seismic data and accurately recovering the 3D facies model, whereas the semisupervised GAN is effective in avoiding overfitting in the case of extremely limited well data. The latter seems, therefore, particularly adapted to exploration or early field development stages in which labeled data from wells are still very scarce.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1984-1999 ◽  
Author(s):  
M. M. Saggaf ◽  
M. Nafi Toksöz ◽  
M. I. Marhoon

We present an approach based on competitive neural networks for the classification and identification of reservoir facies from seismic data. This approach can be adapted to perform either classification of the seismic facies based entirely on the characteristics of the seismic response, without requiring the use of any well information, or automatic identification and labeling of the facies where well information is available. The former is of prime use for oil prospecting in new regions, where few or no wells have been drilled, whereas the latter is most useful in development fields, where the information gained at the wells can be conveniently extended to the interwell regions. Cross‐validation tests on synthetic and real seismic data demonstrated that the method can be an effective means of mapping the reservoir heterogeneity. For synthetic data, the output of the method showed considerable agreement with the actual geologic model used to generate the seismic data; for the real data application, the predicted facies accurately matched those observed at the wells. Moreover, the resulting map corroborates our existing understanding of the reservoir and shows substantial similarity to the low‐frequency geologic model constructed by interpolating the well information, while adding significant detail and enhanced resolution to that model.


Author(s):  
Runhai Feng ◽  
Niels Balling ◽  
Dario Grana ◽  
Jesper Soren Dramsch ◽  
Thomas Mejer Hansen

Sign in / Sign up

Export Citation Format

Share Document