scholarly journals Relatively equi-statistical convergence via deferred Nörlund mean based on difference operator of fractional-order and related approximation theorems

2020 ◽  
Vol 5 (1) ◽  
pp. 650-672 ◽  
Author(s):  
B. B. Jena ◽  
◽  
S. K. Paikray ◽  
S. A. Mohiuddine ◽  
Vishnu Narayan Mishra ◽  
...  
2019 ◽  
Vol 69 (6) ◽  
pp. 1367-1380 ◽  
Author(s):  
Stanislav Chaichenko ◽  
Andrii Shidlich ◽  
Fahreddin Abdullayev

Abstract In the Orlicz type spaces 𝓢M, we prove direct and inverse approximation theorems in terms of the best approximations of functions and moduli of smoothness of fractional order. We also show the equivalence between moduli of smoothness and Peetre K-functionals in the spaces 𝓢M.


2020 ◽  
Vol 39 (2) ◽  
pp. 317-339
Author(s):  
P. Parida ◽  
Susanta Kumar Paikray ◽  
B. B. Jena

2020 ◽  
Vol 13 (5) ◽  
pp. 1212-1230
Author(s):  
Susanta Kumar Paikray ◽  
Priyadarsini Parida ◽  
S. A. Mohiuddine

The aim of this paper is to introduce the notions of relatively deferred Nörlund uniform statistical convergence as well as relatively deferred Norlund point-wise statistical convergence through the dierence operator of fractional order of fuzzy-number-valued sequence of functions, and a type of convergence which lies between aforesaid notions, namely, relatively deferred Nörlund equi-statistical convergence. Also, we investigate the inclusion relations among these aforesaidnotions. As an application point of view, we establish a fuzzy approximation (Korovkin-type) theorem by using our new notion of relatively deferred Norlund equi-statistical convergence and intimate that this result is a non-trivial generalization of several well-established fuzzy Korovkin-type theorems which were presented in earlier works. Moreover, we estimate the fuzzy rate of the relatively deferred Nörlund equi-statistical convergence involving a non-zero scale function by using the fuzzy modulus of continuity.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
Mary Jacintha ◽  
Abdullah Özbekler

The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Δψλzηλ+pλzηλ+qλF∑s=λ0λ−1+μ λ−s−1−μys=0, where zλ=aλ+bλΔμyλ, Δμ stands for the fractional difference operator in Riemann-Liouville settings and of order μ, 0<μ≤1, and η≥1 is a quotient of odd positive integers and λ∈ℕλ0+1−μ. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.


Sign in / Sign up

Export Citation Format

Share Document