scholarly journals An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints

2022 ◽  
Vol 12 (1) ◽  
pp. 135
Author(s):  
Canghua Jiang ◽  
Dongming Zhang ◽  
Chi Yuan ◽  
Kok Ley Teo

<p style='text-indent:20px;'>This paper proposes an active set solver for <inline-formula><tex-math id="M2">\begin{document}$ H_\infty $\end{document}</tex-math></inline-formula> min-max optimal control problems involving linear discrete-time systems with linearly constrained states, controls and additive disturbances. The proposed solver combines Riccati recursion with dynamic programming. To deal with possible degeneracy (i.e. violations of the linear independence constraint qualification), constraint transformations are introduced that allow the surplus equality constraints on the state at each stage to be moved to the previous stage together with their Lagrange multipliers. In this way, degeneracy for a feasible active set can be determined by checking whether there exists an equality constraint on the initial state over the prediction horizon. For situations when the active set is degenerate and all active constraints indexed by it are non-redundant, a vertex exploration strategy is developed to seek a non-degenerate active set. If the sampled state resides in a robust control invariant set and certain second-order sufficient conditions are satisfied at each stage, then a bounded <inline-formula><tex-math id="M3">\begin{document}$ l_2 $\end{document}</tex-math></inline-formula> gain from the disturbance to controlled output can be guaranteed for the closed-loop system under some standard assumptions. Theoretical analysis and numerical simulations show that the computational complexity per iteration of the proposed solver depends linearly on the prediction horizon.</p>

2018 ◽  
Vol 24 (4) ◽  
pp. 1705-1734 ◽  
Author(s):  
Roman Šimon Hilscher ◽  
Vera Zeidan

The main focus of this paper is to develop a sufficiency criterion for optimality in nonlinear optimal control problems defined on time scales. In particular, it is shown that the coercivity of the second variation together with the controllability of the linearized dynamic system are sufficient for the weak local minimality. The method employed is based on a direct approach using the structure of this optimal control problem. The second aim pertains to the sensitivity analysis for parametric control problems defined on time scales with separately varying state endpoints. Assuming a slight strengthening of the sufficiency criterion at a base value of the parameter, the perturbed problem is shown to have a weak local minimum and the corresponding multipliers are shown to be continuously differentiable with respect to the parameter. A link is established between (i) a modification of the shooting method for solving the associated boundary value problem, and (ii) the sufficient conditions involving the coercivity of the accessory problem, as opposed to the Riccati equation, which is also used for this task. This link is new even for the continuous time setting.


2019 ◽  
Vol 25 ◽  
pp. 1 ◽  
Author(s):  
Lucas Bonifacius ◽  
Konstantin Pieper

Sufficient conditions for strong stability of a class of linear time-optimal control problems with general convex terminal set are derived. Strong stability in turn guarantees qualified optimality conditions. The theory is based on a characterization of weak invariance of the target set under the controlled equation. An appropriate strengthening of the resulting Hamiltonian condition ensures strong stability and yieldsa prioribounds on the size of multipliers, independent of,e.g., the initial point or the running cost. In particular, the results are applied to the control of the heat equation into anL2-ball around a desired state.


Sign in / Sign up

Export Citation Format

Share Document