algebraic solutions
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 21 (9-10) ◽  
pp. 721-736
Author(s):  
Gary McConnell ◽  
Harry Spencer ◽  
Afaq Tahir

The problem of finding provably maximal sets of mutually unbiased bases in $\CC^d$, for composite dimensions $d$ which are not prime powers, remains completely open. In the first interesting case,~$d=6$, Zauner predicted that there can exist no more than three MUBs. We explore possible algebraic solutions in~$d=6$ by looking at their~`shadows' in vector spaces over finite fields. The main result is that if a counter-example to Zauner's conjecture were to exist, then it would leave no such shadow upon reduction modulo several different primes, forcing its algebraic complexity level to be much higher than that of current well-known examples. In the case of prime powers~$q \equiv 5 \bmod 12$, however, we are able to show some curious evidence which --- at least formally --- points in the opposite direction. In $\CC^6$, not even a single vector has ever been found which is mutually unbiased to a set of three MUBs. Yet in these finite fields we find sets of three `generalised MUBs' together with an orthonormal set of four vectors of a putative fourth MUB, all of which lifts naturally to a number field.


2021 ◽  
Author(s):  
Fellipe Grillo Peternella ◽  
peter harmsma ◽  
Roland Horsten ◽  
Thim Zuidwijk ◽  
H. Urbach ◽  
...  

Author(s):  
Andronikos Paliathanasis ◽  
Genly Leon ◽  
P. G. L. Leach

Abstract We apply the Painlevé test for the Benney and the Benney–Gjevik equations, which describe waves in falling liquids. We prove that these two nonlinear 1 + 1 evolution equations pass the singularity test for the travelling-wave solutions. The algebraic solutions in terms of Laurent expansions are presented.


Author(s):  
V.A. Ufaev

On the basis of the hypothesis of equality of the measured and true values of the amplitude of the field strength, an algebraic solution for estimating the unknown coordinates and the energy parameter of the radiator is obtained. Initially, by compiling and solving a redefined system of linear equations by pseudo-rotation of matrices, the coordinates of the emitter are determined under the assumption of independence of the distance to the reference point from the coordinates of the emitter. Then make and solve the square equation concerning distance to a reference point with the subsequent estimation of coordinates and an energy parameter. The ambiguity of the algebraic solution is resolved by comparing the maximum likelihood functional and choosing the parameters at which its maximum is reached. According to the simulation of a cellular-type system in multiplicative noise, the results of algebraic solutions by the maximum likelihood method and the calculated ones are close, except for a special zone where anomalous changes occur due to the limitations of the coordinate determination method. Algebraic solutions for maximum likelihood estimation provide an increase in the calculation speed of about 500 times. The proposed principle can be used in solving the ambiguity of algebraic solutions in systems of difference-rangefinder type and in the inverse problem of self-positioning of the receiving point by the amplitude of the electromagnetic field of beacons with a known location. The article contains 4 figures, a list of references from 9 sources.


Author(s):  
Mitsuo Kato ◽  
◽  
Toshiyuki Mano ◽  
Jiro Sekiguchi ◽  
◽  
...  

Flat structure was introduced by K. Saito and his collaborators at the end of 1970's. Independently the WDVV equation arose from the 2D topological field theory. B. Dubrovin unified these two notions as Frobenius manifold structure. In this paper, we study isomonodromic deformations of an Okubo system, which is a special kind of systems of linear differential equations. We show that the space of independent variables of such isomonodromic deformations can be equipped with a Saito structure (without a metric), which was introduced by C. Sabbah as a generalization of Frobenius manifold. As its consequence, we introduce flat basic invariants of well-generated finite complex reflection groups and give explicit descriptions of Saito structures (without metrics) obtained from algebraic solutions to the sixth Painlevé equation.


Sign in / Sign up

Export Citation Format

Share Document