scholarly journals Approximation and model order reduction for second order systems with Levy-noise

Author(s):  
Peter Benner ◽  
Martin Redmann
2018 ◽  
Vol 41 (8) ◽  
pp. 2310-2318 ◽  
Author(s):  
Shafiq Haider ◽  
Abdul Ghafoor ◽  
Muhammad Imran ◽  
Fahad Mumtaz Malik

A new scheme for model order reduction of large-scale second-order systems in time-limited intervals is presented. Time-limited Gramians that are solutions of continuous-time algebraic Lyapunov equations for second-order form systems are introduced. Time-limited second-order balanced truncation procedures with provision of balancing position and velocity Gramians are formulated. Stability conditions for reduced-order models are stated and algorithms that preserve stability in reduced-order models are discussed. Numerical examples are presented to validate the superiority of the proposed scheme compared with the infinite-time Gramians technique for time-limited applications.


2018 ◽  
Vol 18 (04) ◽  
pp. 1850033 ◽  
Author(s):  
Martin Redmann ◽  
Peter Benner

To solve a stochastic linear evolution equation numerically, finite dimensional approximations are commonly used. For a good approximation, one might end up with a sequence of ordinary stochastic linear equations of high order. To reduce the high dimension for practical computations, we consider the singular perturbation approximation as a model order reduction technique in this paper. This approach is well-known from deterministic control theory and here we generalize it for controlled linear systems with Lévy noise. Additionally, we discuss properties of the reduced order model, provide an error bound, and give some examples to demonstrate the quality of this model order reduction technique.


2017 ◽  
Vol 20 (2) ◽  
pp. 790-801 ◽  
Author(s):  
Shafiq Haider ◽  
Abdul Ghafoor ◽  
Muhammad Imran ◽  
Fahad Mumtaz Malik

2012 ◽  
Vol 436 (8) ◽  
pp. 2780-2794 ◽  
Author(s):  
Yung-Ta Li ◽  
Zhaojun Bai ◽  
Wen-Wei Lin ◽  
Yangfeng Su

2018 ◽  
Vol 10 (2) ◽  
pp. 94
Author(s):  
Shazzad Hasan ◽  
M. Monir Uddin

This paper studies the structure preserving (second-order to second-order) model order reduction of second-order systems applying the projection onto the dominant eigenspace of the Gramians of the systems. The projectors which create the reduced order model are generated cheaply from the low-rank Gramian factors. The low-rank Gramian factors are computed efficiently by solving the corresponding Lyapunov equations of the system using the rational Krylov subspace method. The efficiency of the theoretical results are then illustrated by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document