frequency interval
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 74)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shuyong Jia ◽  
Qizhen Wang ◽  
Hongyan Li ◽  
Xiaojing Song ◽  
Shuyong Wang ◽  
...  

Acupuncture and moxibustion are widely used in clinical practice; however, the differences between their mechanisms are unclear. In the present study, the response of blood perfusion resulting from acupuncture or moxibustion at Ximen (PC4) and its surrounding points was explored. Using the wavelet method, the differences in the frequency interval of blood flux were observed. Furthermore, the correlations between these points were analyzed. The results suggested that moxibustion could significantly improve blood flow perfusion at PC4 compared to acupuncture; however, there was no significant difference around PC4. The response of blood flux at PC4 to different stimulations was related to the frequency V (0.4–1.6 Hz) component. However, a difference in response at other points was not observed. Correlation analysis showed that both acupuncture and moxibustion could cause a decline in the correlation of blood flux signals at these recorded points, but there was no significant difference between these techniques. The results suggested that, at least in the forearm, the acupuncture or moxibustion only influenced the level of blood perfusion locally.


2021 ◽  
Vol 11 (18) ◽  
pp. 8761
Author(s):  
Ahmad Naebi ◽  
Zuren Feng ◽  
Farhoud Hosseinpour ◽  
Gahder Abdollahi

One of the main challenges in studying brain signals is the large size of the data due to the use of many electrodes and the time-consuming sampling. Choosing the right dimensional reduction method can lead to a reduction in the data processing time. Evolutionary algorithms are one of the methods used to reduce the dimensions in the field of EEG brain signals, which have shown better performance than other common methods. In this article, (1) a new Bond Graph algorithm (BGA) is introduced that has demonstrated better performance on eight benchmark functions compared to genetic algorithm and particle swarm optimization. Our algorithm has fast convergence and does not get stuck in local optimums. (2) Reductions of features, electrodes, and the frequency range have been evaluated simultaneously for brain signals (left-handed and right-handed). BGA and other algorithms are used to reduce features. (3) Feature extraction and feature selection (with algorithms) for time domain, frequency domain, wavelet coefficients, and autoregression have been studied as well as electrode reduction and frequency interval reduction. (4) First, the features/properties (algorithms) are reduced, the electrodes are reduced, and the frequency range is reduced, which is followed by the construction of new signals based on the proposed formulas. Then, a Common Spatial Pattern is used to remove noise and feature extraction and is classified by a classifier. (5) A separate study with a deep sampling method has been implemented as feature selection in several layers with functions and different window sizes. This part is also associated with reducing the feature and reducing the frequency range. All items expressed in data set IIa from BCI competition IV (the left hand and right hand) have been evaluated between one and three channels, with better results for similar cases (in close proximity). Our method demonstrated an increased accuracy by 5 to 8% and an increased kappa by 5%.


2021 ◽  
Vol 11 (18) ◽  
pp. 8605
Author(s):  
Eglė Jotautienė ◽  
Antanas Juostas ◽  
Shankar Bhandari

The threshing mechanism is the main component of the combine harvester on which the grain separation and cleaning qualitative work indicators depend. It is important to ensure that all threshing mechanism components, including the threshing drum bearings and all other bearings of the combine, are working properly and reliably. There are many places in the combine where it is not possible to measure bearing vibrations directly without dismounting them, since there is no suitable spot to mount a sensor. The paper investigates the threshing drum rolling bearing condition of combines, which are difficult to access, by using a vibration diagnostics technique utilizing a newly manufactured steel bracket. The vibration measurements and analysis were conducted by the Adash A4900 Vibrio M analyzer (Adash spol. s.r.o., Ostrava, Czech Republic). The vibration source measurement was based on the fast Fourier transform (FFT) spectrum analysis. Analysis of the experimental results showed that average squared velocity values (in the frequency interval of 10–1000 Hz), together with other measured vibration parameters, can be used for the combine threshing drum‘s bearing condition evaluation.


2021 ◽  
Vol 66 (7) ◽  
pp. 570
Author(s):  
M. Molla Gessesse

We have studied the statistical and squeezing properties of the cavity light generated by a two-level laser. This optical system contains N two-level atoms available in a cavity coupled to a single-mode vacuum reservoir. They are pumped to the top level from the bottom level by means of the electron bombardment. Applying the steady-state solutions of the equations of evolution of the expectation values of the atomic operators and the quantum Langevin equation, we obtained the global and local photon statistics of the single-mode light beam. We have found that, for the two-level laser operating well above the threshold, the uncertainties in the plus and minus quadratures are equal and satisfy the minimum uncertainty relation. In view of this, we have identified the light generated by the laser operating well above threshold to be coherent. On the other hand, the light generated by the laser operating at threshold is found to be chaotic. From the obtained results, we have also observed that a large part of the local mean photon number, the local photon number variance, and the local quadrature variance are confined in a relatively narrow frequency interval.


2021 ◽  
Author(s):  
Stepan Piltyay

In this article we carry out the comparative analysis of new compact satellite polarisers based on a square guide with diaphragms. The main electromagnetic parameters of the developed microwave guide devices with various amount of diaphragms were obtained within the satellite frequency interval from 10.7 GHz to 12.75 GHz. Waveguide polarization converters with different amount of diaphragms from 3 to 5 have been designed and optimized. The main parameters of the presented polarizer were calculated applying the numerical method of finite integration in the frequency domain. Optimization of the electromagnetic parameters of the developed waveguide devices was carried out using the finite elements method in the frequency domain. As a result, sizes of the guide polarizer designs have been optimized for the provision of improved polarization and phase parameters. The performed analysis showed that a waveguide polarizer with five diaphragms has the best electromagnetic parameters. The developed compact polarizer with five diaphragms based on a square guide provides a minimum deviation of the output phase difference from 90 degrees and high level of isolation between linear polarization over the entire operating frequency range. Presented in the article compact waveguide polarization converters can be applied in modern satellite systems, which require efficient polarization transformation and separation of signals.


2021 ◽  
Vol 10 (2) ◽  
pp. 44-55
Author(s):  
S. Piltyay ◽  
A. Bulashenko ◽  
I. Fesyuk ◽  
O. Bulashenko

In this article we carry out the comparative analysis of new compact satellite polarisers based on a square guide with diaphragms. The main electromagnetic parameters of the developed microwave guide devices with various amount of diaphragms were obtained within the satellite frequency interval from 10.7 GHz to 12.75 GHz. Waveguide polarization converters with different amount of diaphragms from 2 to 5 have been designed and optimized. The main parameters of the presented polarizer were calculated applying the numerical method of finite integration in the frequency domain. Optimization of the electromagnetic parameters of the developed waveguide devices was carried out using the software CST Microwave Studio. As a result, sizes of the device designs have been optimized for the provision of improved polarization and phase parameters. The performed analysis showed that a waveguide polarizer with five diaphragms has the best electromagnetic parameters. The developed compact polarizer with five diaphragms based on a square guide provides a minimum deviation of the output phase difference from 90 degrees and high level of isolation between linear polarization over the entire operating frequency range. Presented in the article compact waveguide polarization converters can be applied in satellite systems, which require efficient polarization separation of signals.


2021 ◽  
Vol 2 (5) ◽  
pp. 39-52
Author(s):  
Ender Ozturk ◽  
Fatih Erden ◽  
Ismail Guvenc

Unmanned Aerial Vehicles (UAVs), or drones, which can be considered as a coverage extender for Internet of Everything (IoE), have drawn high attention recently. The proliferation of drones will raise privacy and security concerns in public. This paper investigates the problem of classification of drones from Radio Frequency (RF) fingerprints at the low Signal-to-Noise Ratio (SNR) regime. We use Convolutional Neural Networks (CNNs) trained with both RF time-series images and the spectrograms of 15 different off-the-shelf drone controller RF signals. When using time-series signal images, the CNN extracts features from the signal transient and envelope. As the SNR decreases, this approach fails dramatically because the information in the transient is lost in the noise, and the envelope is distorted heavily. In contrast to time-series representation of the RF signals, with spectrograms, it is possible to focus only on the desired frequency interval, i.e., 2.4 GHz ISM band, and filter out any other signal component outside of this band. These advantages provide a notable performance improvement over the time-series signals-based methods. To further increase the classification accuracy of the spectrogram-based CNN, we denoise the spectrogram images by truncating them to a limited spectral density interval. Creating a single model using spectrogram images of noisy signals and tuning the CNN model parameters, we achieve a classification accuracy varying from 92% to 100% for an SNR range from -10 dB to 30 dB, which significantly outperforms the existing approaches to our best knowledge.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ying Liu ◽  
Congcong Huo ◽  
Kuan Lu ◽  
Qianying Liu ◽  
Gongcheng Xu ◽  
...  

Older adults with mild cognitive impairment (MCI) have a high risk of developing Alzheimer’s disease. Gait performance is a potential clinical marker for the progression of MCI into dementia. However, the relationship between gait and brain functional connectivity (FC) in older adults with MCI remains unclear. Forty-five subjects [MCI group, n = 23; healthy control (HC) group, n = 22] were recruited. Each subject performed a walking task (Task 01), counting backward–walking task (Task 02), naming animals–walking task (Task 03), and calculating–walking task (Task 04). The gait parameters and cerebral oxygenation signals from the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left motor cortex (LMC), right motor cortex (RMC), left occipital leaf cortex (LOL), and right occipital leaf cortex (ROL) were obtained simultaneously. Wavelet phase coherence was calculated in two frequency intervals: low frequency (interval I, 0.052–0.145 Hz) and very low frequency (interval II, 0.021–0.052 Hz). Results showed that the FC of RPFC–RMC is significantly lower in interval I in Task 03 compared with that in Task 02 in the MCI group (p = 0.001). Also, the right relative symmetry index (IDpsR) is significantly lower in Task 03 compared with that in Task 02 (p = 0.000). The IDpsR is positively correlated with the FC of RPFC–RMC in interval I in the MCI group (R = 0.205, p = 0.041). The gait symmetry such as left relative symmetry index (IDpsL) and IDpsR is significantly lower in the dual-task (DT) situation compared with the single task in the two groups (p < 0.05). The results suggested that the IDpsR might reflect abnormal change in FC of RPFC–RMC in interval I in the MCI population during Task 03. The gait symmetry is affected by DTs in both groups. The findings of this study may have a pivotal role in the early monitoring and intervention of brain dysfunction among older adults with MCI.


2021 ◽  
Author(s):  
Haocheng Wang ◽  
Xuan Zhang ◽  
Yang Tian ◽  
Zhiqiang He ◽  
Xiaohui Hu ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
pp. 645-661
Author(s):  
Alfredo Peña ◽  
Branko Kosović ◽  
Jeffrey D. Mirocha

Abstract. We investigate the ability of the Weather Research and Forecasting model to perform large-eddy simulation of canonical flows. This is achieved through comparison of the simulation outputs with measurements from sonic anemometers on a 250 m meteorological mast located at Østerild, in northern Denmark. Østerild is on a flat and rough area, and for the predominant wind directions, the atmospheric flow can be considered to be close to homogeneous. The idealized simulated flows aim at representing atmospheric boundary layer turbulence under unstable, neutral, and stable stability conditions at the surface, which are statistically significant conditions observed at Østerild. We found that the resolved fields from the simulations appear to have the characteristics of the three stability regimes. Vertical profiles of observed mean wind speeds and direction are well reproduced by the simulations, with the largest differences under near-neutral conditions, where the effect of the subgrid-scale model is evident on the vertical wind shear close to the surface. Vertical profiles of observed eddy fluxes are also well reproduced by the simulations, with the largest differences for the three velocity component variances under stable stability conditions, although nearly always within the observed variability. With regards to turbulent kinetic energy, we find good agreement between observations and simulations at all vertical levels. Simulated and observed velocity spectra match very well and show very similar behavior with height and with atmospheric stability within the low-frequency interval; at the effective resolution, the simulated spectra show the typical drop-off of finite differences. Our findings demonstrate that these idealized simulations reproduce the characteristics of atmospheric stability regimes often observed at a high turbulent and flat site within a direction sector, where the air flows over nearly homogeneous land.


Sign in / Sign up

Export Citation Format

Share Document