Markov repairable systems with stochastic regimes switching

2011 ◽  
Vol 22 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Liying Wang ◽  
Lirong Cui ◽  
Mingli Yu
2021 ◽  
Vol 11 (5) ◽  
pp. 2300
Author(s):  
Simone Arena ◽  
Irene Roda ◽  
Ferdinando Chiacchio

The dependability assessment is a crucial activity for determining the availability, safety and maintainability of a system and establishing the best mitigation measures to prevent serious flaws and process interruptions. One of the most promising methodologies for the analysis of complex systems is Dynamic Reliability (also known as DPRA) with models that define explicitly the interactions between components and variables. Among the mathematical techniques of DPRA, Stochastic Hybrid Automaton (SHA) has been used to model systems characterized by continuous and discrete variables. Recently, a DPRA-oriented SHA modelling formalism, known as Stochastic Hybrid Fault Tree Automaton (SHyFTA), has been formalized together with a software library (SHyFTOO) that simplifies the resolution of complex models. At the state of the art, SHyFTOO allows analyzing the dependability of multistate repairable systems characterized by a reactive maintenance policy. Exploiting the flexibility of SHyFTA, this paper aims to extend the tools’ functionalities to other well-known maintenance policies. To achieve this goal, the main features of the preventive, risk-based and condition-based maintenance policies will be analyzed and used to design a software model to integrate into the SHyFTOO. Finally, a case study to test and compare the results of the different maintenance policies will be illustrated.


2004 ◽  
Vol 36 (1) ◽  
pp. 116-138 ◽  
Author(s):  
Yonit Barron ◽  
Esther Frostig ◽  
Benny Levikson

An R-out-of-N repairable system, consisting of N independent components, is operating if at least R components are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 11452-11463 ◽  
Author(s):  
Linhan Guo ◽  
Yu Wang ◽  
Yi Yang ◽  
Kang Li

Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Abstract This paper approaches environmentally conscious design by further developing a reliability model that facilitates design for reuse. Many reliability models are not suitable for describing systems that undergo repairs performed during remanufacture and maintenance because the models do not allow the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system reconfiguration are developed to enable life-cycle cost estimation for repairable systems. These reliability indices of a population of repairable systems are proven theoretically to reach steady state. The expressions of these indices at steady state are obtained to gain insight into the model behavior, and to facilitate life-cycle cost estimation.


Sign in / Sign up

Export Citation Format

Share Document