log likelihood ratio
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 81 (9) ◽  
Author(s):  
P. Adhikari ◽  
R. Ajaj ◽  
M. Alpízar-Venegas ◽  
P.-A. Amaudruz ◽  
D. J. Auty ◽  
...  

AbstractThe DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $$^{39}\text{ Ar }$$ 39 Ar beta decays and is suppressed using pulse-shape discrimination (PSD). We use two types of PSD estimator: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the mean single-photoelectron charge, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulse shape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.


2021 ◽  
Vol 59 (3) ◽  
pp. 251-256
Author(s):  
Jihye Yu ◽  
Woojin Kim ◽  
Yoon Kyung Chang ◽  
Tong-Soo Kim ◽  
Sung-Jong Hong ◽  
...  

We find out the clusters with high toxoplasmosis risk to discuss the geographical pattern in Gyodong-myeon and Samsan-myeon of Ganghwa-gun, Cheorwon-gun, and Goseong-gun, Korea. Seroepidemiological data of toxoplasmosis surveyed using rapid diagnostic tests for the residents in the areas in 2019 were analyzed to detect clusters of the infection. The cluster was investigated using the SaTScan program which is based on Kulldorff’s scan statistic. The clusters were found with P-values in each region analyzed in the program, and the risk and patient incidence of specific areas can be examined by the values such as relative risk and log likelihood ratio. Jiseok-ri and Insa-ri were found to be a cluster in Gyodong-myeon and Seokmo-ri was the cluster in Samsan-myeon. Yangji-ri and Igil-ri were found to be a cluster in Cheorwon-gun and Madal-ri and Baebong-ri were the cluster in Goseong-gun. This findings can be used to monitor and prevent toxoplasmosis infections occurring in vulnerable areas.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 784
Author(s):  
Yu Fu ◽  
Hongwen Yang

Accurate estimation of channel log-likelihood ratio (LLR) is crucial to the decoding of modern channel codes like turbo, low-density parity-check (LDPC), and polar codes. Under an additive white Gaussian noise (AWGN) channel, the calculation of LLR is relatively straightforward since the closed-form expression for the channel likelihood function can be perfectly known to the receiver. However, it would be much more complicated for heterogeneous networks where the global noise (i.e., noise plus interference) may be dominated by non-Gaussian interference with an unknown distribution. Although the LLR can still be calculated by approximating the distribution of global noise as Gaussian, it will cause performance loss due to the non-Gaussian nature of global noise. To address this problem, we propose to use bi-Gaussian (BG) distribution to approximate the unknown distribution of global noise, for which the two parameters of BG distribution can easily be estimated from the second and fourth moments of the overall received signals without any knowledge of interfering channel state information (CSI) or signaling format information. Simulation results indicate that the proposed BG approximation can effectively improve the word error rate (WER) performance. The gain of BG approximation over Gaussian approximation depends heavily on the interference structure. For the scenario of a single BSPK interferer with a 5 dB interference-to-noise ratio (INR), we observed a gain of about 0.6 dB. The improved LLR estimation can also accelerate the convergence of iterative decoding, thus involving a lower overall decoding complexity. In general, the overall decoding complexity can be reduced by 25 to 50%.


2021 ◽  
Author(s):  
Raymond Veldhuis ◽  
Dan Zeng

<div><div><div><p>In classical binary statistical pattern recognition optimality in Neyman-Pearson sense, achieved by a (log) likelihood ratio based classifier, is often desirable. A drawback of a Neyman-Pearson optimal classifier is that it requires full knowledge of the (quotient of the) class-conditional probability densities of the input data, which is often unrealistic. The design of neural net classifiers is data driven, meaning that no explicit use is made of the class-conditional probability densities of the input data. In this paper a proof is presented that a neural net can also be trained to approximate a log-likelihood ratio and be used as a Neyman-Pearson optimal, prior-independent classifier. Properties of the approximation of the log-likelihood ratio are discussed. Examples of neural nets trained on synthetic data with known log-likelihood ratios as ground truth illustrate the results.</p></div></div></div>


2021 ◽  
Author(s):  
Raymond Veldhuis ◽  
Dan Zeng

<div><div><div><p>In classical binary statistical pattern recognition optimality in Neyman-Pearson sense, achieved by a (log) likelihood ratio based classifier, is often desirable. A drawback of a Neyman-Pearson optimal classifier is that it requires full knowledge of the (quotient of the) class-conditional probability densities of the input data, which is often unrealistic. The design of neural net classifiers is data driven, meaning that no explicit use is made of the class-conditional probability densities of the input data. In this paper a proof is presented that a neural net can also be trained to approximate a log-likelihood ratio and be used as a Neyman-Pearson optimal, prior-independent classifier. Properties of the approximation of the log-likelihood ratio are discussed. Examples of neural nets trained on synthetic data with known log-likelihood ratios as ground truth illustrate the results.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document