Andes mountains and human dimensions of global change, an overview

Pirineos ◽  
2008 ◽  
Vol 163 (0) ◽  
pp. 7-13 ◽  
Author(s):  
F. Sarmiento
2000 ◽  
Vol 32 (2) ◽  
pp. 217-239 ◽  
Author(s):  
Clark C. Gibson ◽  
Elinor Ostrom ◽  
T.K. Ahn

Author(s):  
Diana Liverman ◽  
Brent Yarnal

The human–environment condition has emerged as one of the central issues of the new millennium, especially as it has become apparent that human activity is transforming nature at a global scale in both systemic and cumulative ways. Originating with concerns about potential climate warming, the global environmental change agenda rapidly enlarged to include changes in structure and function of the earth’s natural systems, notably those systems critical for life, and the policy implications of these changes, especially focused on the coupled human–environment system. Recognition of the unprecedented pace, magnitude, and spatial scale of global change, and of the pivotal role of humankind in creating and responding to it, has led to the emergence of a worldwide, interdisciplinary effort to understand the human dimensions of global change. The term “global change” now encompasses a range of research issues including those relating to economic, political, and cultural globalization, but in this chapter we limit our focus to global environmental change and to the field that has become formally known as the human dimensions of global (or global environmental) change. We also focus mainly on the work of geographers rather than attempting to review the whole human dimensions research community. Intellectually, geography is well positioned to contribute to global environmental change research (Liverman 1999). The large-scale human transformation of the planet through activities such as agriculture, deforestation, water diversion, fossil fuel use, and urbanization, and the impacts of these on living conditions through changes in, for example, climate and biodiversity, has highlighted the importance of scholarship that analyzes the human–environmental relationship and can inform policy. Geography is one of the few disciplines that has historically claimed human–environment relationships as a definitional component of itself (Glacken 1967; Marsh 1864) and has fostered a belief in and reward system for engaging integrative approaches to problem solving (Golledge 2002; Turner 2002). Moreover, global environmental change is intimately spatial and draws upon geography-led remote sensing and geographic information science (Liverman et al. 1998). Geographers anticipated the emergence of current global change concerns (Thomas et al. 1956; Burton et al. 1978) and were seminal in the development of the multidisciplinary programs of study into the human dimensions of global change.


Author(s):  
Anna Carrabetta ◽  
Susan Gallagher Heffron

Author(s):  
Rosemary E. Ommer ◽  
Astrid C. Jarre ◽  
R. Ian Perry ◽  
Manuel Barange ◽  
Kevern Cochrane ◽  
...  

Author(s):  
James R. Fleming

Apprehensions have been multiplying rapidly that we are approaching a crisis in our relationship with nature, one that could have potentially catastrophic results for the sustainability of civilization and even the habitability of the planet. Much of the concern is rightfully focused on changes in the atmosphere caused by human activities. Only a century after the discovery of the stratosphere, only five decades after the invention of chlorofluorocarbons (CFCs), and only two decades after atmospheric chemists warned of the destructive nature of chlorine and other compounds, we fear that ozone in the stratosphere is being damaged by human activity. Only a century after the first models of the carbon cycle were developed, only three decades after regular CO2 measurements began at Mauna Loa Observatory, and only two decades after climate modelers first doubled the CO2 in a computerized atmosphere, we fear that the Earth may experience a sudden and possibly catastrophic warming caused by industrial pollution. These and other environmental problems were brought to our attention mainly by scientists and engineers, but the problems belong to us all. Recently, policy-oriented social scientists, public officials, and diplomats have turned their attention to the complex human dimensions of these issues. New interdisciplinary and multidisciplinary collaborations have arisen between scientists and policymakers to examine the extremely challenging issues raised by global change. There has been a rising tide of literature—scholarly works, new journals, textbooks, government documents, treaties, popular accounts—some quite innovative, others derivative and somewhat repetitious. This has resulted in growing public awareness of environmental issues, new understanding of global change science and policy, widespread concerns over environmental risks, and recently formulated plans to intervene in the global environment through various forms of social and behavioral engineering, and possibly geoengineering. Global change is now at the center of an international agenda to understand, predict, protect, and possibly control the global environment. The changing nature of global change—the historical dimension—has not received adequate attention. Most writing addresses current issues in either science or policy; much of it draws on a few authoritative scientific statements such as those by the Intergovernmental Panel on Climate Change (IPCC); almost none of it is informed by historical sensibility.


2019 ◽  
Vol 11 (23) ◽  
pp. 2783 ◽  
Author(s):  
Narcisa G. Pricope ◽  
Kerry L. Mapes ◽  
Kyle D. Woodward

The role of remote sensing and human–environment interactions (HEI) research in social and environmental decision-making has steadily increased along with numerous technological and methodological advances in the global environmental change field. Given the growing inter- and trans-disciplinary nature of studies focused on understanding the human dimensions of global change (HDGC), the need for a synchronization of agendas is evident. We conduct a bibliometric assessment and review of the last two decades of peer-reviewed literature to ascertain what the trends and current directions of integrating remote sensing into HEI research have been and discuss emerging themes, challenges, and opportunities. Despite advances in applying remote sensing to understanding ever more complex HEI fields such as land use/land cover change and landscape degradation, agricultural dynamics, urban geography and ecology, natural hazards, water resources, epidemiology, or paleo HEIs, challenges remain in acquiring and leveraging accurately georeferenced social data and establishing transferable protocols for data integration. However, recent advances in micro-satellite, unmanned aerial systems (UASs), and sensor technology are opening new avenues of integration of remotely sensed data into HEI research at scales relevant for decision-making purposes that simultaneously catalyze developments in HDGC research. Emerging or underutilized methodologies and technologies such as thermal sensing, digital soil mapping, citizen science, UASs, cloud computing, mobile mapping, or the use of “humans as sensors” will continue to enhance the relevance of HEI research in achieving sustainable development goals and driving the science of HDGC further.


Sign in / Sign up

Export Citation Format

Share Document