natural systems
Recently Published Documents


TOTAL DOCUMENTS

2030
(FIVE YEARS 728)

H-INDEX

68
(FIVE YEARS 10)

2022 ◽  
pp. 003072702110731
Author(s):  
K.G. Cassman ◽  
D.J. Connor

Perennial grain crops have been proposed as environmentally sustainable alternatives to annual grain crop systems that currently dominate the world's major breadbaskets. Proponents emphasize the potential of perennial grains to mimic natural systems and thereby reduce soil erosion, nutrient losses, and degradation of soil quality although need for adequate grain yield is also recognized as a prerequisite for success. Here we assess progress since 2005 (16 y) towards development of perennial grain systems with sufficient productivity to be seen as competent alternatives to annual wheat on the prairies and plains of North America and Australia. Based on reports published in refereed journals, we see little evidence that yield of Intermediate Wheatgrass or perennial wheats have improved to the point they are viable alternatives. Slow progress is attributed to lack of minimum grain yield targets for economic viability, lack of designated target regions where perennial grains are most likely to be competitive against annuals, selection methods that focused on components of yield rather than yield per se (i.e. on an area basis), and relatively small R & D investment compared to resources given to genetic and agronomic improvement of major annual grain crops. Given current status, we conclude that perennial grains will require substantial R & D investment and several decades if they are to achieve sufficient yield potential and yield persistence to become more than a niche crop for upscale health food markets in wealthy countries.


Oecologia ◽  
2022 ◽  
Author(s):  
Seton Bachle ◽  
Jesse B. Nippert

AbstractGrassland ecosystems are historically shaped by climate, fire, and grazing which are essential ecological drivers. These grassland drivers influence morphology and productivity of grasses via physiological processes, resulting in unique water and carbon-use strategies among species and populations. Leaf-level physiological responses in plants are constrained by the underlying anatomy, previously shown to reflect patterns of carbon assimilation and water-use in leaf tissues. However, the magnitude to which anatomy and physiology are impacted by grassland drivers remains unstudied. To address this knowledge gap, we sampled from three locations along a latitudinal gradient in the mesic grassland region of the central Great Plains, USA during the 2018 (drier) and 2019 (wetter) growing seasons. We measured annual biomass and forage quality at the plot level, while collecting physiological and anatomical traits at the leaf-level in cattle grazed and ungrazed locations at each site. Effects of ambient drought conditions superseded local grazing treatments and reduced carbon assimilation and total productivity in A. gerardii. Leaf-level anatomical traits, particularly those associated with water-use, varied within and across locations and between years. Specifically, xylem area increased when water was more available (2019), while xylem resistance to cavitation was observed to increase in the drier growing season (2018). Our results highlight the importance of multi-year studies in natural systems and how trait plasticity can serve as vital tool and offer insight to understanding future grassland responses from climate change as climate played a stronger role than grazing in shaping leaf physiology and anatomy.


2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Sarah N. Sells ◽  
Michael S. Mitchell ◽  
David E. Ausband ◽  
Angela D. Luis ◽  
Douglas J. Emlen ◽  
...  

Ecologists have long sought to understand space use and mechanisms underlying patterns observed in nature. We developed an optimality landscape and mechanistic territory model to understand mechanisms driving space use and compared model predictions to empirical reality. We demonstrate our approach using grey wolves ( Canis lupus ). In the model, simulated animals selected territories to economically acquire resources by selecting patches with greatest value, accounting for benefits, costs and trade-offs of defending and using space on the optimality landscape. Our approach successfully predicted and explained first- and second-order space use of wolves, including the population's distribution, territories of individual packs, and influences of prey density, competitor density, human-caused mortality risk and seasonality. It accomplished this using simple behavioural rules and limited data to inform the optimality landscape. Results contribute evidence that economical territory selection is a mechanistic bridge between space use and animal distribution on the landscape. This approach and resulting gains in knowledge enable predicting effects of a wide range of environmental conditions, contributing to both basic ecological understanding of natural systems and conservation. We expect this approach will demonstrate applicability across diverse habitats and species, and that its foundation can help continue to advance understanding of spatial behaviour.


2022 ◽  
Author(s):  
Bojie Fu ◽  
Xutong Wu ◽  
Zhuangzhuang Wang ◽  
Xilin Wu ◽  
Shuai Wang

Abstract. Addressing the sustainability challenges facing humanity in the Anthropocene requires the coupling of human and natural systems, rather than their separate treatment. To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we proposed a conceptual cascade framework of “Pattern-Process-Service-Sustainability”. The use of this framework was systematically illustrated by a review of CHANS research experiences in China’s Loess Plateau (LP) in terms of coupling landscape patterns and ecological processes, linking ecological processes to services, and promoting social-ecological sustainability. The LP is well-known for its historically notorious soil erosion and successful vegetation restoration achieved in recent decades. Vegetation coverage in the LP has increased since 2000 due to ecological restoration. Soil erosion has been well controlled and the sediment deriving from the LP, and flowing into the Yellow River, has greatly decreased; however, overplanting, the introduction of exotic plant species, and the mismanagement of planted vegetation have also led to soil drying in some areas. Ecosystem services, especially for soil conservation and carbon sequestration, have significantly improved, although a trade-off between carbon sequestration and water supply has been identified at multiple scales. Based on the comprehensive understanding of CHANS dynamics, targeted policy and management suggestions are here proposed to support the social-ecological sustainability of the LP. The research experience accumulated on the LP offers examples of the application of the “Pattern-Process-Service-Sustainability” framework. Future research using this framework should especially examine the integrated research of multiple processes, the cascades of ecosystem structure, function, services, and human-wellbeing, the feedback mechanisms of human and natural systems, and the data and models for sustainability.


2022 ◽  
Vol 9 ◽  
Author(s):  
Sébastien M. J. Portalier ◽  
Gregor F. Fussmann ◽  
Michel Loreau ◽  
Mehdi Cherif

First derivations of the functional response were mechanistic, but subsequent uses of these functions tended to be phenomenological. Further understanding of the mechanisms underpinning predator-prey relationships might lead to novel insights into functional response in natural systems. Because recent consideration of the physical properties of the environment has improved our understanding of predator-prey interactions, we advocate the use of physics-based approaches for the derivation of the functional response from first principles. These physical factors affect the functional response by constraining the ability of both predators and prey to move according to their size. A physics-based derivation of the functional response should thus consider the movement of organisms in relation to their physical environment. One recent article presents a model along these criteria. As an initial validation of our claim, we use a slightly modified version of this model to derive the classical parameters of the functional response (i.e., attack rate and handling time) of aquatic organisms, as affected by body size, buoyancy, water density and viscosity. We compared the predictions to relevant data. Our model provided good fit for most parameters, but failed to predict handling time. Remarkably, this is the only parameter whose derivation did not rely on physical principles. Parameters in the model were not estimated from observational data. Hence, systematic discrepancies between predictions and real data point immediately to errors in the model. An added benefit to functional response derivation from physical principles is thus to provide easy ways to validate or falsify hypotheses about predator-prey relationships.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 193
Author(s):  
Peter M. Rudberg ◽  
Timos Karpouzoglou

Damming and water regulation creates highly modified rivers with limited ecosystem integrity and resilience. This, coupled with an ongoing global biodiversity crisis, makes river restoration a priority, which requires water reallocation. Coupled human–natural systems research provides a suitable lens for integrated systems’ analysis but offers limited insight into the governance processes of water reallocation. Therefore, we propose an analytical framework, which combines insight from social–hydrological resilience and water reallocation research, and identifies the adaptive capacity in highly modified rivers as the capacity for water reallocation. We test the framework by conducting an analysis of Sweden, pre- and post-2019, a critical juncture in the governance of the country’s hydropower producing rivers. We identify a relative increase in adaptive capacity post- 2019 since water reallocation is set to occur in smaller rivers and tributaries, while leaving large-scaled rivers to enjoy limited water reallocation, or even increased allocation to hydropower. We contend that the proposed framework is broad enough to be of general interest, yet sufficiently specific to contribute to the construction of middle-range theories, which could further our understanding of why and how governance processes function, change, and lead to outcomes in terms of modified natural resource management and resilience shifts.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Samuel M. Youssef ◽  
MennaAllah Soliman ◽  
Mahmood A. Saleh ◽  
Mostafa A. Mousa ◽  
Mahmoud Elsamanty ◽  
...  

Nature and biological creatures are some of the main sources of inspiration for humans. Engineers have aspired to emulate these natural systems. As rigid systems become increasingly limited in their capabilities to perform complex tasks and adapt to their environment like living creatures, the need for soft systems has become more prominent due to the similar complex, compliant, and flexible characteristics they share with intelligent natural systems. This review provides an overview of the recent developments in the soft robotics field, with a focus on the underwater application frontier.


Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Daniil V. Popov ◽  
Richard A. Spikings ◽  
Théodore Razakamanana

Experimental studies increasingly often report low-temperature (200–800 °C) and low-pressure (0.05–3 kbar) hydrosilicate fluids with >40 wt.% of SiO2 and >10 wt.% of H2O. Compositionally similar fluids were long suggested to potentially exist in natural systems such as pegmatites and hydrothermal veins. However, they are rarely invoked in recent petrogenetic models, perhaps because of the scarcity of direct evidence for their natural occurrence. Here we review such evidence from previous works and add to this by documenting inclusions of hydrosilicate fluids in quartz and feldspar from Itrongay. The latter comprise opal-A, opal-CT, moganite and quartz inclusions that frequently contain H2O and have negative crystal shapes. They coexist with inclusions of CO2- and H2O-rich fluids and complex polycrystalline inclusions containing chlorides, sulphates, carbonates, arsenates, oxides, hydroxides and silicates, which we interpret as remnants of saline liquids. Collectively, previous studies and our new results indicate that hydrosilicate fluids may be common in the Earth’s crust, although their tendency to transform into quartz upon cooling and exhumation renders them difficult to recognise. These data warrant more comprehensive research into the nature of such hydrosilicate fluids and their distribution across a wide range of pressure and temperature conditions and geological systems.


Author(s):  
Takaaki Miyaguchi

AbstractNumerous challenges confront the task of evaluating sustainable development—its complex nature, complementary evaluation criteria, and the difficulty of evaluation at the nexus of human and natural systems. Theory-based evaluation, drawn from critical realism, is well suited to this task. When constructing a program theory/theory of change for evaluating sustainable development, concepts of socioecological systems and coupled human and natural systems are useful. The chapter discusses four modes of inference and the application of different theory-based evaluation approaches. It introduces the CHANS (coupled human and natural systems) framework, a holistic, analytical framework that is useful in evaluating such complex, social-ecological systems and resonates with the challenging elements of sustainable development evaluation.


Author(s):  
Andy Rowe

AbstractThree facts underlay this chapter. First, the human system and all our ambitions for improving the human system depend on sustainable natural systems. Second, we do not have much time. On track to fall well short of all sustainability goals, the climate and sustainability crises grow and extinction looms. Third, up to this point evaluation has shown little interest in sustainability, yet evaluation potentially addresses the very questions that are central to informing and guiding rapid adaptation of human behavior to successfully surmounting extinction.Business-as-usual evaluation will not suffice. At the endgame with extinction looming, we need an evaluation that is more nimble, keeps up with rapidly accelerating knowledge, is relentlessly use-seeking and that guides the way to joined-up approaches. The evaluation we need will systematically mainstream sustainability across all evaluations and interventions, in all evaluation criteria and standards. For this, all evaluations will always address nexus where human and natural systems join and incorporate knowledge and methods from both systems. Existing evaluation knowledge is well suited to this task, as are knowledges in biophysical sciences. We know and promote knowledge processes for integrative evaluation and are starting to shift toward the requirements for evaluation at the nexus. As this chapter shows, the anchors holding us back are political, not technical.


Sign in / Sign up

Export Citation Format

Share Document