Consistent Capillary Pressure and Relative Permeability for Mixed-wet Systems in Macroscopic Three-phase Flow Simulation

Author(s):  
R. Holm ◽  
M.I.J. van Dijke ◽  
S. Geiger ◽  
M. Espedal
SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 841-850 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Water-alternating-gas (WAG) injection in waterflooded reservoirs can increase oil recovery and extend the life of these reservoirs. Reliable reservoir simulations are needed to predict the performance of WAG injection before field implementation. This requires accurate sets of relative permeability (kr) and capillary pressure (Pc) functions for each fluid phase, in a three-phase-flow regime. The WAG process also involves another major complication, hysteresis, which is caused by flow reversal happening during WAG injection. Hysteresis is one of the most important phenomena manipulating the performance of WAG injection, and hence, it has to be carefully accounted for. In this study, we have benefited from the results of a series of coreflood experiments that we have been performing since 1997 as a part of the Characterization of Three-Phase Flow and WAG Injection JIP (joint industry project) at Heriot-Watt University. In particular, we focus on a WAG experiment carried out on a water-wet core to obtain three-phase relative permeability values for oil, water, and gas. The relative permeabilities exhibit significant and irreversible hysteresis for oil, water, and gas. The observed hysteresis, which is a result of the cyclic injection of water and gas during WAG injection, is not predicted by the existing hysteresis models. We present a new three-phase relative permeability model coupled with hysteresis effects for the modeling of the observed cycle-dependent relative permeabilities taking place during WAG injection. The approach has been successfully tested and verified with measured three-phase relative permeability values obtained from a WAG experiment. In line with our laboratory observations, the new model predicts the reduction of the gas relative permeability during consecutive water-and-gas-injection cycles as well as the increase in oil relative permeability happening in consecutive water-injection cycles.


1966 ◽  
Vol 6 (03) ◽  
pp. 199-205 ◽  
Author(s):  
A.M. Sarem

Abstract For the performance prediction of multiphase oil recovery processes such as steam stimulation, there is an acute need for three-phase relative permeability data. No fast and simple experimental technique, such as the unsteady-state method proposed by Welge for two-phase flow, is available for the three-phase flow. In this paper, an unsteady-state method is presented for obtaining three-phase relative permeability data; this method is as fast and easy as Welge's method for two-phase flow. Analytical expressions are derived by extension of the Buckley-Leverett theory to three-phase flow to express the saturation at the outflow face for all three phases in terms of the known parameters. It is assumed that the fractional flow and relative permeability of each phase are a function of the saturation of that phase. Other simplifying assumptions made include the neglect of capillary and gravity effects. The effect of saturation history upon relative permeability is acknowledged and attainment of similar saturation history in laboratory and field is recommended. The required experimental work and computations are simple to perform. The test core is presaturated with oil and water, then subjected to gas drive. During the test, required data are the rates of oil, water, and gas production, together with pressure drop and temperature. The ordinary gas-oil unsteady-state relative permeability apparatus can be readily modified to measure the required data. The proposed technique was applied to samples of a Berea and a reservoir core. The effect of saturation history upon relative permeability was studied on one Berea core. It was found that increase in initial water saturation has a similar effect upon three-phase relative permeability as it does in two-phase flow. Introduction In the light of increasing demand for three-phase, relative permeability data for predicting the performance of thermal and other multiphase-flow recovery processes, a simple and accurate method of experimental determination of such data is extremely desirable. Leverett and Lewis1 described the simultaneous flow method of obtaining three-phase relative permeability data. However, Caudle et al.2 reported that this method is very time consuming and cumbersome. Corey3 proposed calculating the three-phase relative permeability from measured krg data. Corey's theory is based on simplified capillary pressure curves,4 assuming a straight line relationship between 1/Pc2 and saturation. Also, Corey's method assumes a preferentially water-wet system. The simplest and quickest method of obtaining three-phase relative permeability data is the unsteady-state method where, for instance, oil and water are displaced by gas. However, in such a test the correlation of average saturation with relative permeability does not give a valid relationship because the rates of oil, water and gas flow in the sample change continuously from the upstream to downstream end. This difficulty in calculating valid relationships was solved by Welge for two-phase flow by deriving an expression from Buckley and Leverett frontal advance equations.5,6 In this paper, relations are established to determine the outflow face saturation and relative permeability to all phases in a three-phase flow displacement experiment. Proposed Method The fundamentals established by Buckley and Leverett5 for two-phase flow were extended to three-phase flow and used as a basis for the derivation of saturation equations. This approach is comparable to Welge's6 use of Buckley and Leverett theory in arriving at expressions to determine the outflow face saturation of the displacing fluid in a two-phase flow system.


Sign in / Sign up

Export Citation Format

Share Document