Contrast Source Inversion of Marine Controlled Source Electromagnetic Data for Hydrocarbon Prospecting

Author(s):  
T. Wiik ◽  
K. Hokstad
PIERS Online ◽  
2006 ◽  
Vol 2 (3) ◽  
pp. 223-226
Author(s):  
Peter M. Van den Berg ◽  
Aria Abubakar ◽  
Tarek M Habashy

Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. F65-F76 ◽  
Author(s):  
Torgeir Wiik ◽  
Lars Ole Løseth ◽  
Bjørn Ursin ◽  
Ketil Hokstad

We present a 3D contrast source inversion scheme for electromagnetic data in conductive media. We consider only contrasts in electric conductivity but allow the medium to be transversely isotropic in the vertical direction. This has applications in, for instance, inversion of marine controlled-source electromagnetic data. The contrast source inversion (CSI) method is based on the integral equation formulation of electromagnetic field propagation and solves the inverse problem of determining the conductivity structure of the subsurface. The method minimizes a cost functional that enforces both data fidelity and that the solution satisfy the Lippmann-Schwinger equation. Further regularization is introduced linearly into the cost functional to incorporate prior model information. Although the problem is nonlinear, the chosen strategy splits the minimization problem into two linear problems, which are solved alternatingly. To this end, contrast sources are introduced, which may be interpreted as sources emitting the scattered field from a scattering object. Two synthetic and two real field examples are inverted, which demonstrates the method and how the transversely isotropic in the vertical direction (TIV) inversion performs compared with isotropic inversion. The CSI method is found to be applicable to real field examples, and the results show that a TIV inversion is preferred over isotropic to identify weak anomalies in these examples. The reason for this is that both the horizontal and vertical conductivity affects the signal propagation in the overburden.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. E315-E327 ◽  
Author(s):  
Torgeir Wiik ◽  
Ketil Hokstad ◽  
Bjørn Ursin ◽  
Lutz Mütschard

We evaluated a joint contrast source inversion scheme for marine controlled-source electromagnetic (mCSEM) and magnetotelluric (MT) data based on a scattered field formulation. The scheme considered only contrasts in electric conductivity, and it allowed the medium to be transversely isotropic with a vertical symmetry axis. The method was based on the integral equation formulation of electromagnetic field propagation, and we demonstrated how the method solved the inverse problem of determining the conductivity structure of the subsurface. The method did not consider MT impedances as data input to inversion, but instead explicitly the field components, and the consequences of this approach, were discussed. Although there are challenges associated with source estimation and data noise, we found it easier to make connections to CSEM and it simplified some computational issues. Three synthetic examples were considered to demonstrate the method: a reservoir below an anisotropic overburden, a salt diapir, and a reservoir near a salt diapir. MT and CSEM data were first treated sequentially, first inverting the MT data and using the result as the initial model and in the regularization in CSEM inversion. The result of this approach was then compared to a joint inversion. The same approach was finally applied to a real data set. We found that sequential inversions in some situations produced similar results as joint inversions, and hence, joint inversion may not be necessary in all situations. Nonetheless, joint inversion could be useful for imaging salt diapirs and eventually hydrocarbons near salt. In particular, it was useful to map the spatial extent of the salt diapirs. It was, moreover, a useful tool for checking data consistency in different models with respect to several data types.


2010 ◽  
Vol 26 (11) ◽  
pp. 115010 ◽  
Author(s):  
Amer Zakaria ◽  
Colin Gilmore ◽  
Joe LoVetri

Sign in / Sign up

Export Citation Format

Share Document