Deblending of Simultaneous Source Data Using a Non-Uniform, Hybrid-Radon Transform

Author(s):  
Y. Ji ◽  
C. Willacy ◽  
Z. Tang ◽  
S. Tegtmeier-Last
Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. V1-V11 ◽  
Author(s):  
Amr Ibrahim ◽  
Mauricio D. Sacchi

We adopted the robust Radon transform to eliminate erratic incoherent noise that arises in common receiver gathers when simultaneous source data are acquired. The proposed robust Radon transform was posed as an inverse problem using an [Formula: see text] misfit that is not sensitive to erratic noise. The latter permitted us to design Radon algorithms that are capable of eliminating incoherent noise in common receiver gathers. We also compared nonrobust and robust Radon transforms that are implemented via a quadratic ([Formula: see text]) or a sparse ([Formula: see text]) penalty term in the cost function. The results demonstrated the importance of incorporating a robust misfit functional in the Radon transform to cope with simultaneous source interferences. Synthetic and real data examples proved that the robust Radon transform produces more accurate data estimates than least-squares and sparse Radon transforms.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. A9-A12 ◽  
Author(s):  
Kees Wapenaar ◽  
Joost van der Neut ◽  
Jan Thorbecke

Deblending of simultaneous-source data is usually considered to be an underdetermined inverse problem, which can be solved by an iterative procedure, assuming additional constraints like sparsity and coherency. By exploiting the fact that seismic data are spatially band-limited, deblending of densely sampled sources can be carried out as a direct inversion process without imposing these constraints. We applied the method with numerically modeled data and it suppressed the crosstalk well, when the blended data consisted of responses to adjacent, densely sampled sources.


Geophysics ◽  
2021 ◽  
pp. 1-56
Author(s):  
Breno Bahia ◽  
Rongzhi Lin ◽  
Mauricio Sacchi

Denoisers can help solve inverse problems via a recently proposed framework known as regularization by denoising (RED). The RED approach defines the regularization term of the inverse problem via explicit denoising engines. Simultaneous source separation techniques, being themselves a combination of inversion and denoising methods, provide a formidable field to explore RED. We investigate the applicability of RED to simultaneous-source data processing and introduce a deblending algorithm named REDeblending (RDB). The formulation permits developing deblending algorithms where the user can select any denoising engine that satisfies RED conditions. Two popular denoisers are tested, but the method is not limited to them: frequency-wavenumber thresholding and singular spectrum analysis. We offer numerical blended data examples to showcase the performance of RDB via numerical experiments.


2018 ◽  
Vol 151 ◽  
pp. 274-289 ◽  
Author(s):  
Shaohuan Zu ◽  
Hui Zhou ◽  
Weijian Mao ◽  
Fei Gong ◽  
Weilin Huang

2020 ◽  
Vol 221 (3) ◽  
pp. 2052-2052
Author(s):  
Yangkang Chen ◽  
Shaohuan Zu ◽  
Yufeng Wang ◽  
Xiaohong Chen

Sign in / Sign up

Export Citation Format

Share Document