scholarly journals Synergisms between Alien Trees and the Argentine Ant on Indigenous Ant Species in the Cape Floristic Region, South Africa

2011 ◽  
Vol 19 (1) ◽  
pp. 96-105 ◽  
Author(s):  
C.S. Schoeman ◽  
M.J. Samways
2017 ◽  
Vol 113 (9/10) ◽  
Author(s):  
Leif Petersen ◽  
Andrew M. Reid ◽  
Eugene J. Moll ◽  
Marc T. Hockings

Cape Town is a fast-growing cityscape in the Cape Floristic Region in South Africa with 24 formally protected conservation areas including the World Heritage Table Mountain National Park. These sites have been protected and managed as critical sites for local biodiversity, representing potentially one-third of all Cape Floristic Region flora species and 18% of South Africa’s plant diversity. Cape Town is also inhabited by a rapidly growing culturally and economically diverse citizenry with distinct and potentially conflicting perspectives on access to, and management of, local natural resources. In a qualitative study of 58 locally resident traditional healers of distinct cultural groups, we examined motivations underlying the generally illicit activity of harvesting of wild resources from Cape Town protected areas. Resource harvester motivations primarily link to local economic survival, health care and cultural links to particular resources and practices, ‘access for all’ outlooks, and wholesale profit-seeking perspectives. We describe these motivations, contrast them with the current formal, legal and institutional perspectives for biodiversity protection in the city, and propose managerial interventions that may improve sustainability of ongoing harvest activities.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6139 ◽  
Author(s):  
John P. Simaika ◽  
Michael Samways ◽  
Sven M. Vrdoljak

Congruence between plant and insect diversity is considered possibly useful in conservation planning, as the better known plants could be surrogates for the lesser known insects. There has been little quantification of congruence across space, especially in biodiversity rich areas. We compare here species richness, and turnover relationships between plants and flower-visiting insects across space (0.5–80 km) in natural areas of a biodiversity hotspot, the Greater Cape Floristic Region, South Africa. A total of 22,352 anthophile individuals in 198 species and 348 plant species were sampled. A comparison between the plants and anthophiles suggest significant concordance between the two assemblages. However, turnover was weaker in plants than in anthophiles. Plant turnover decreased with greater geographical distance between plot pairs. In contrast, insect turnover remained high with increasing geographical distance between plot pairs. These findings suggest that while patterns of plant diversity and distribution shape flower-visiting insect assemblages, they are not reliable surrogates. The conservation significance of these results is that specialist mutualisms are at greatest risk, and that set-asides on farms would help improve the functional connectivity leading to the maintenance of the full range of mutualisms.


Bothalia ◽  
2008 ◽  
Vol 38 (1) ◽  
pp. 89-102 ◽  
Author(s):  
M. Mergili ◽  
S. Privett

The private Grootbos Nature Reserve is located at the Western edge of the Agulhas Plain in the Cape Floristic Region of South Africa, an area characterized by high habitat and floristic diversity. The Reserve is covered in near-natural fynbos shrublands with a few patches of forest and wetland. The main objective of this study was to classify the vegetation into discrete units and relate them to the prevailing environmental conditions. The vegetation was analysed by numerical means (TWINSPAN, DC A, CCA) and mapped on GIS. At the vegetation type level. Forest Thicket and Fynbos formed distinctive clusters, whereas the wetland releves were intermixed, but without relationships to one of these units. Fire incidence served as the major determinant of the forest-fynbos boundary. The Forest Thicket grouping was separated into Thicket (as transitional to fynbos), Afromontane Forest and Milkwood Scrub Forest. Two broad complexes were distinguished within the Fynbos grouping, the Alkaline Sand Fynbos Complex corresponding to Coastal Fynbos. and the Acid Sand Fynbos Complex corresponding to Mountain Fynbos. They discriminated along gradients of pH. soil depth and rock cover. The complexes were further subdivided into formations by using one or a few subjectively chosen dominant species as indicators. The transitions between these formations were rather continuous than discrete. The vegetation type and complex levels correspond well to existing fynbos-wide classifications. Comparing the formations to the results of other vegetation studies is problematic even on the scale of the Agulhas Plain, due to the high regional plant diversity in the Fynbos Biome.


2019 ◽  
Vol 46 (9) ◽  
pp. 1936-1947 ◽  
Author(s):  
Rafael O. Wüest ◽  
Florian C. Boucher ◽  
Yanis Bouchenak‐Khelladi ◽  
Dirk N. Karger ◽  
H. Peter Linder

2012 ◽  
Vol 79 ◽  
pp. 96-101 ◽  
Author(s):  
A.M. Muasya ◽  
J.-A. Viljoen ◽  
C.H. Stirton ◽  
N.A. Helme

Sign in / Sign up

Export Citation Format

Share Document