Securing the External Interfaces of a Federated Infrastructure Cloud

Author(s):  
Philippe Massonet ◽  
Arnaud Michot ◽  
Syed Naqvi ◽  
Massimo Villari ◽  
Joseph Latanicki

This chapter describes an open source solution for securing the Claudia service manager and the OpenNebula virtual execution environment manager when combined in a federated RESERVOIR architecture. The security services provide confidentiality, authentication, and integrity by securing the external API. The chapter describes how to integrate the security solution in an open source cloud computing system, how to install it, and provides an illustrative case study showing its potential for the community. The aim of the chapter is to help those who want to build their own secure infrastructure clouds. The open source security code provides mutual authentication between clients and the Claudia service manager, and secures the SMI interface with role based access control. The same security services can also secure the VMI with role based access control and X509 certificates. Finally the federation can be secured by combining an LDAP server to manage the federation and XACML security policies, and using policy matching to guarantee the respect of security policies within the federation.

2013 ◽  
pp. 1876-1903
Author(s):  
Philippe Massonet ◽  
Arnaud Michot ◽  
Syed Naqvi ◽  
Massimo Villari ◽  
Joseph Latanicki

This chapter describes an open source solution for securing the Claudia service manager and the OpenNebula virtual execution environment manager when combined in a federated RESERVOIR architecture. The security services provide confidentiality, authentication, and integrity by securing the external API. The chapter describes how to integrate the security solution in an open source cloud computing system, how to install it, and provides an illustrative case study showing its potential for the community. The aim of the chapter is to help those who want to build their own secure infrastructure clouds. The open source security code provides mutual authentication between clients and the Claudia service manager, and secures the SMI interface with role based access control. The same security services can also secure the VMI with role based access control and X509 certificates. Finally the federation can be secured by combining an LDAP server to manage the federation and XACML security policies, and using policy matching to guarantee the respect of security policies within the federation.


2016 ◽  
Vol 6 (8) ◽  
pp. 215 ◽  
Author(s):  
Bing-Chang Chen ◽  
Cheng-Ta Yang ◽  
Her-Tyan Yeh ◽  
Ching-Chao Lin

Author(s):  
Alberto De la Rosa Algarín ◽  
Steven A. Demurjian ◽  
Timoteus B. Ziminski ◽  
Yaira K. Rivera Sánchez ◽  
Robert Kuykendall

Today’s applications are often constructed by bringing together functionality from multiple systems that utilize varied technologies (e.g. application programming interfaces, Web services, cloud computing, data mining) and alternative standards (e.g. XML, RDF, OWL, JSON, etc.) for communication. Most such applications achieve interoperability via the eXtensible Markup Language (XML), the de facto document standard for information exchange in domains such as library repositories, collaborative software development, health informatics, etc. The use of a common data format facilitates exchange and interoperability across heterogeneous systems, but challenges in the aspect of security arise (e.g. sharing policies, ownership, permissions, etc.). In such situations, one key security challenge is to integrate the local security (existing systems) into a global solution for the application being constructed and deployed. In this chapter, the authors present a Role-Based Access Control (RBAC) security framework for XML, which utilizes extensions to the Unified Modeling Language (UML) to generate eXtensible Access Control Markup Language (XACML) policies that target XML schemas and instances for any application, and provides both the separation and reconciliation of local and global security policies across systems. To demonstrate the framework, they provide a case study in health care, using the XML standards Health Level Seven’s (HL7) Clinical Document Architecture (CDA) and the Continuity of Care Record (CCR). These standards are utilized for the transportation of private and identifiable information between stakeholders (e.g. a hospital with an electronic health record, a clinic’s electronic health record, a pharmacy system, etc.), requiring not only a high level of security but also compliance to legal entities. For this reason, it is not only necessary to secure private information, but for its application to be flexible enough so that updating security policies that affect millions of documents does not incur a large monetary or computational cost; such privacy could similarly involve large banks and credit card companies that have similar information to protect to deter identity theft. The authors demonstrate the security framework with two in-house developed applications: a mobile medication management application and a medication reconciliation application. They also detail future trends that present even more challenges in providing security at global and local levels for platforms such as Microsoft HealthVault, Harvard SMART, Open mHealth, and open electronic health record systems. These platforms utilize XML, equivalent information exchange document standards (e.g., JSON), or semantically augmented structures (e.g., RDF and OWL). Even though the primary use of these platforms is in healthcare, they present a clear picture of how diverse the information exchange process can be. As a result, they represent challenges that are domain independent, thus becoming concrete examples of future trends and issues that require a robust approach towards security.


2016 ◽  
pp. 487-522
Author(s):  
Alberto De la Rosa Algarín ◽  
Steven A. Demurjian ◽  
Timoteus B. Ziminski ◽  
Yaira K. Rivera Sánchez ◽  
Robert Kuykendall

Today's applications are often constructed by bringing together functionality from multiple systems that utilize varied technologies (e.g. application programming interfaces, Web services, cloud computing, data mining) and alternative standards (e.g. XML, RDF, OWL, JSON, etc.) for communication. Most such applications achieve interoperability via the eXtensible Markup Language (XML), the de facto document standard for information exchange in domains such as library repositories, collaborative software development, health informatics, etc. The use of a common data format facilitates exchange and interoperability across heterogeneous systems, but challenges in the aspect of security arise (e.g. sharing policies, ownership, permissions, etc.). In such situations, one key security challenge is to integrate the local security (existing systems) into a global solution for the application being constructed and deployed. In this chapter, the authors present a Role-Based Access Control (RBAC) security framework for XML, which utilizes extensions to the Unified Modeling Language (UML) to generate eXtensible Access Control Markup Language (XACML) policies that target XML schemas and instances for any application, and provides both the separation and reconciliation of local and global security policies across systems. To demonstrate the framework, they provide a case study in health care, using the XML standards Health Level Seven's (HL7) Clinical Document Architecture (CDA) and the Continuity of Care Record (CCR). These standards are utilized for the transportation of private and identifiable information between stakeholders (e.g. a hospital with an electronic health record, a clinic's electronic health record, a pharmacy system, etc.), requiring not only a high level of security but also compliance to legal entities. For this reason, it is not only necessary to secure private information, but for its application to be flexible enough so that updating security policies that affect millions of documents does not incur a large monetary or computational cost; such privacy could similarly involve large banks and credit card companies that have similar information to protect to deter identity theft. The authors demonstrate the security framework with two in-house developed applications: a mobile medication management application and a medication reconciliation application. They also detail future trends that present even more challenges in providing security at global and local levels for platforms such as Microsoft HealthVault, Harvard SMART, Open mHealth, and open electronic health record systems. These platforms utilize XML, equivalent information exchange document standards (e.g., JSON), or semantically augmented structures (e.g., RDF and OWL). Even though the primary use of these platforms is in healthcare, they present a clear picture of how diverse the information exchange process can be. As a result, they represent challenges that are domain independent, thus becoming concrete examples of future trends and issues that require a robust approach towards security.


Author(s):  
M Meneka ◽  
K. Meenakshisundaram

To be able to leverage big data to achieve enhanced strategic insight and make informed decision, an efficient access control mechanism is needed for ensuring end to end security of such information asset. Attribute Based Access Control (ABAC), Role Based Access Control (RBAC) and Event Based Access Control (EBAC) are widely used access control mechanisms. The ABAC system is much more complex in terms of policy reviews, hence analyzing the policy and reviewing or changing user permission are quite complex task. RBAC system is labor intensive and time consuming to build a model instance and it lacks flexibility to efficiently adapt to changing user’s, objects and security policies. EBAC model considered only the events to allocate access controls. Yet these mechanisms have limitations and offer feature complimentary to each other. So in this paper, Event-Role-Attribute based fine grained Access Control mechanism is proposed, it provide a flexible boundary which effectively adapt to changing user’s, objects and security policies based on the event. The flexible boundary is achieved by using temporal and environment state of an event. It improves the big data security and overcomes the disadvantages of the ABAC and RBAC mechanisms. The experiments are conducted to prove the effectiveness of the proposed Event-Role-Attribute based Access Control mechanism over ABAC and RBAC in terms of computational overhead.


Sign in / Sign up

Export Citation Format

Share Document