A Formal Language for XML Authorisations Based on Answer Set Programming and Temporal Interval Logic Constraints

Author(s):  
Sean Policarpio ◽  
Yan Zhang

The Extensible Markup Language is susceptible to security breaches because it does not incorporate methods to protect the information it encodes. This work focuses on the development of a formal language that can provide role-based access control to information stored in XML formatted documents. This language has the capacity to reason whether access to an XML document should be allowed. The language, Axml(T), allows for the specification of authorisations on XML documents and distinguishes itself from other research with the inclusion of temporal interval reasoning and the XPath query language.

2011 ◽  
Vol 2 (1) ◽  
pp. 22-39
Author(s):  
Sean Policarpio ◽  
Yan Zhang

The Extensible Markup Language is susceptible to security breaches because it does not incorporate methods to protect the information it encodes. This work focuses on the development of a formal language that can provide role-based access control to information stored in XML formatted documents. This language has the capacity to reason whether access to an XML document should be allowed. The language, Axml(T), allows for the specification of authorisations on XML documents and distinguishes itself from other research with the inclusion of temporal interval reasoning and the XPath query language.


2008 ◽  
Vol 8 (3) ◽  
pp. 323-361 ◽  
Author(s):  
J. M. ALMENDROS-JIMÉNEZ ◽  
A. BECERRA-TERÓN ◽  
F. J. ENCISO-BAÑOS

AbstractExtensible Markup Language (XML) is a simple, very flexible text format derived from SGML. Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in the exchange of a wide variety of data on the Web and elsewhere. XPath language is the result of an effort to provide address parts of an XML document. In support of this primary purpose, it becomes in a query language against an XML document. In this paper we present a proposal for the implementation of the XPath language in logic programming. With this aim we will describe the representation of XML documents by means of a logic program. Rules and facts can be used for representing the document schema and the XML document itself. In particular, we will present how to index XML documents in logic programs: rules are supposed to be stored in main memory, however facts are stored in secondary memory by using two kind of indexes: one for each XML tag, and other for each group of terminal items. In addition, we will study how to query by means of the XPath language against a logic program representing an XML document. It evolves the specialization of the logic program with regard to the XPath expression. Finally, we will also explain how to combine the indexing and the top-down evaluation of the logic program.


Author(s):  
Vladimir Viktorovich Pekunov

The subject of the research is the possibility of using XPath-like micro-languages of programming in the generation systems of programs of the PGEN ++ class for the selection and completion of XML-models describing the plan for solving the original problem, according to which the solver program is generated. It is supposed to build such models according to the description of the problem in natural language, thus, we are talking about elements of artificial intelligence technologies. XPath-like language works in the layer of regular-logical expressions (highlighting elements of the primary XML document), performing primary processing of the data obtained in the layer of grammatical parsing of the source text. In addition, XPath-like elements are used to render the final XML models. The standard natural language parsing libraries are used. Non-standard XPath query language extensions are used. For the first time, the idea of expanding the XPath query language to the level of an algorithmic language by introducing the minimum required number of syntactic elements is proposed. It is also proposed to use syntactic elements with an XPath-like structure as both generating and controlling weak constraints of the process of direct inference of final semantic XML models.


2015 ◽  
Vol 64 (9) ◽  
pp. 2490-2505 ◽  
Author(s):  
Dianxiang Xu ◽  
Michael Kent ◽  
Lijo Thomas ◽  
Tejeddine Mouelhi ◽  
Yves Le Traon

Sign in / Sign up

Export Citation Format

Share Document