Synchronizing Execution of Big Data in Distributed and Parallelized Environments

Big Data ◽  
2016 ◽  
pp. 1555-1581
Author(s):  
Gueyoung Jung ◽  
Tridib Mukherjee

In the modern information era, the amount of data has exploded. Current trends further indicate exponential growth of data in the future. This prevalent humungous amount of data—referred to as big data—has given rise to the problem of finding the “needle in the haystack” (i.e., extracting meaningful information from big data). Many researchers and practitioners are focusing on big data analytics to address the problem. One of the major issues in this regard is the computation requirement of big data analytics. In recent years, the proliferation of many loosely coupled distributed computing infrastructures (e.g., modern public, private, and hybrid clouds, high performance computing clusters, and grids) have enabled high computing capability to be offered for large-scale computation. This has allowed the execution of the big data analytics to gather pace in recent years across organizations and enterprises. However, even with the high computing capability, it is a big challenge to efficiently extract valuable information from vast astronomical data. Hence, we require unforeseen scalability of performance to deal with the execution of big data analytics. A big question in this regard is how to maximally leverage the high computing capabilities from the aforementioned loosely coupled distributed infrastructure to ensure fast and accurate execution of big data analytics. In this regard, this chapter focuses on synchronous parallelization of big data analytics over a distributed system environment to optimize performance.

Author(s):  
Gueyoung Jung ◽  
Tridib Mukherjee

In the modern information era, the amount of data has exploded. Current trends further indicate exponential growth of data in the future. This prevalent humungous amount of data—referred to as big data—has given rise to the problem of finding the “needle in the haystack” (i.e., extracting meaningful information from big data). Many researchers and practitioners are focusing on big data analytics to address the problem. One of the major issues in this regard is the computation requirement of big data analytics. In recent years, the proliferation of many loosely coupled distributed computing infrastructures (e.g., modern public, private, and hybrid clouds, high performance computing clusters, and grids) have enabled high computing capability to be offered for large-scale computation. This has allowed the execution of the big data analytics to gather pace in recent years across organizations and enterprises. However, even with the high computing capability, it is a big challenge to efficiently extract valuable information from vast astronomical data. Hence, we require unforeseen scalability of performance to deal with the execution of big data analytics. A big question in this regard is how to maximally leverage the high computing capabilities from the aforementioned loosely coupled distributed infrastructure to ensure fast and accurate execution of big data analytics. In this regard, this chapter focuses on synchronous parallelization of big data analytics over a distributed system environment to optimize performance.


Author(s):  
Lidong Wang

Visualization with graphs is popular in the data analysis of Information Technology (IT) networks or computer networks. An IT network is often modelled as a graph with hosts being nodes and traffic being flows on many edges. General visualization methods are introduced in this paper. Applications and technology progress of visualization in IT network analysis and big data in IT network visualization are presented. The challenges of visualization and Big Data analytics in IT network visualization are also discussed. Big Data analytics with High Performance Computing (HPC) techniques, especially Graphics Processing Units (GPUs) helps accelerate IT network analysis and visualization.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 156929-156955
Author(s):  
Silvina Caino-Lores ◽  
Jesus Carretero ◽  
Bogdan Nicolae ◽  
Orcun Yildiz ◽  
Tom Peterka

Sign in / Sign up

Export Citation Format

Share Document