Game-Based Control Mechanisms for Cognitive Radio Networks

Game Theory ◽  
2017 ◽  
pp. 435-486
Author(s):  
Sungwook Kim

Comprehensive control mechanism in cognitive radio networks is an important research topic within the scope of empowering cognitive radio functionality in beyond-4G mobile networks. Providing control mechanism for secondary users without interference with primary users is an ambitious task, which requires innovative management architecture designs and routing solutions. Operational challenges such as opportunistic spectrum access, solving problems related to spectrum and network heterogeneities, and requests for the provisioning of Quality-of-Service to different applications must be resolved. As part of a novel management architecture, the control mechanism advances a new approach for cognitive radio networks. We explore this in this chapter.

Comprehensive control mechanism in cognitive radio networks is an important research topic within the scope of empowering cognitive radio functionality in beyond-4G mobile networks. Providing control mechanism for secondary users without interference with primary users is an ambitious task, which requires innovative management architecture designs and routing solutions. Operational challenges such as opportunistic spectrum access, solving problems related to spectrum and network heterogeneities, and requests for the provisioning of Quality-of-Service to different applications must be resolved. As part of a novel management architecture, the control mechanism advances a new approach for cognitive radio networks. We explore this in this chapter.


Author(s):  
K. Annapurna ◽  
B. Seetha Ramanjaneyulu

Satisfying the Quality of Service (QoS) is often a challenge in cognitive radio networks, because they depend on opportunistic channel accessing. In this context, appropriate pricing of vacant channels that is linked to the preference in their allocation, is found to be useful. However, ambiguity on the possible price at which the channel would be allotted is still a concern. In this work, an auction mechanism in which maximum value of the bid is predefined is proposed. With this, users quote their bid values as per their needs of getting the channels, up to the predefined maximum allowed bid price. However, final price of allocation is decided based on the sum total demand from all the users and the availability of vacant channels. Performance of the system is found in terms of blocking probabilities of secondary users and revenues to primary users. The proposed system is found to yield similar quantum of revenues as that of the Generalized Second Price (GSP) auction, while offering much lesser blocking probabilities to high-priority users to satisfy their QoS requirements.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1872
Author(s):  
Muddasir Rahim ◽  
Ahmed S. Alfakeeh ◽  
Riaz Hussain ◽  
Muhammad Awais Javed ◽  
Atif Shakeel ◽  
...  

The focus of research efforts in cognitive radio networks (CRNs) has primarily remained confined to maximizing the utilization of the discovered resources. However, it is also important to enhance the user satisfaction in CRNs by finding a suitable match between the secondary users and the idle channels available from the primary network while taking into consideration not only the quality of service (QoS) requirements of the secondary users but the quality of the channels as well. In this work, the Gale Shapley matching theory was applied to find the best match, so that the most suitable channels from the available pool were allocated that satisfy the QoS requirements of the secondary users. Before applying matching theory, two objective functions were defined from the secondary user’s perspective as well as from the channel’s perspective. The objective function of secondary users is the weighted sum of the data rate of the secondary users and the probability of reappearance of the primary user on the channel. Whereas, the objective function of the channel is the maximum utilization of the channel. The weight factors included in the objective functions allow for diverse service classes of secondary users (SUs) or varying channel quality characteristics. The objective functions were used in developing the preference lists for the secondary users and the idle channels. The preference lists were then used by the Gale Shapely matching algorithm to determine the most suitably matched SU-channel pairs. The performance of the proposed scheme was evaluated using Monte–Carlo simulations. The results show significant improvement in the overall satisfaction of the secondary users with the proposed scheme in comparison to other contemporary techniques. Further, the impact of changing the weight factors in the objective functions on the secondary user’s satisfaction and channel utilization was also analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuan Zhao ◽  
Zhiyu Xiang

In traditional multichannel cognitive radio networks (CRNs), users are split into two different priorities. Because of the low priority of secondary users (SUs), SU packets’ transmissions are easily interrupted by primary users (PUs). In this paper, two control parameters, called preemption threshold H and preemption probability q, are used to regulate the preemption behavior of PU packets to improve the transmission performance of SU packets. When all channels in the system are occupied, the preemption behavior of PU packets will be adjusted according to the amount of SU packets that are transmitting in the system. If the amount is larger than H, the recently arrived PU packet either preempts a channel with probability q or leaves the system with probability 1 − q . The central controller manages the system’s channel usage right and determines a series of access behaviors of user packets. Considering the possible imperfect sensing, a discrete-time queueing model is developed with the proposed preemption control mechanism. Then we obtain some performance index expressions of PU and SU packets founded on the system’s state transition matrix and make the corresponding performance figures through numerical experiment. Finally, we construct a system utility function and determine the optimal preemption threshold and preemption probability through the seagull optimization algorithm (SOA). Experimental data show that the proposed mechanism by setting preemption threshold and preemption probability can significantly reduce SU packets’ outage rate and improve SU packets’ throughput rate.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Alaleh Asghary Astaneh ◽  
Solmaz Gheisari

In this paper, cognitive radio network is briefly introduced as well as routing parameters in cognitive radio networks. Due to lack of Spectrum, using not efficient methods of allocating static spectrum, in cognitive radio networks dynamic accessing spectrum is functional. Utilizing opportunistic a Spectrum requires recognition of routing parameters and metrics in cognition radio networks, which means considering fulfilling the minimum requirements of quality of service (QOS) secondary users need to use the allowed range of primary (main) users. Since primary users are prior to use the spectrum, when primary and secondary users coexist, they need to monitor the bandwidth of the authorized spectrum. One of the most important stages to excess the dynamic spectrum is to explore it. Detection of the presence of the authorized users by unauthorized users is one of the things done in this stage, which is called spectroscopy. In the next stage, we used the analyzed information I was spectroscopy, to decide on accessing the spectrum. cognition radio is defined as a smart wireless communication system, which is aware of the environment and changes its job variables like power forward, type of modulation, carrier frequency etc. using environment learning. For further explaining routing metrics, we try to compare routing metrics in cognitive radio networks and wireless network and analyze its challenges in one-way routing and in multi-route routing.


2009 ◽  
Vol 53 (8) ◽  
pp. 1158-1170 ◽  
Author(s):  
Xavier Gelabert ◽  
Ian F. Akyildiz ◽  
Oriol Sallent ◽  
Ramon Agustí

Author(s):  
Sylwia Romaszko ◽  
Petri Mähönen

In the case of Opportunistic Spectrum Access (OSA), unlicensed secondary users have only limited knowledge of channel parameters or other users' information. Spectral opportunities are asymmetric due to time and space varying channels. Owing to this inherent asymmetry and uncertainty of traffic patterns, secondary users can have trouble detecting properly the real usability of unoccupied channels and as a consequence visiting channels in such a way that they can communicate with each other in a bounded period of time. Therefore, the channel service quality, and the neighborhood discovery (NB) phase are fundamental and challenging due to the dynamics of cognitive radio networks. The authors provide an analysis of these challenges, controversies, and problems, and review the state-of-the-art literature. They show that, although recently there has been a proliferation of NB protocols, there is no optimal solution meeting all required expectations of CR users. In this chapter, the reader also finds possible solutions focusing on an asynchronous channel allocation covering a channel ranking.


Author(s):  
Rajni Dubey ◽  
Sanjeev Sharma ◽  
Lokesh Chouhan

Most of the frequency spectrum bands have already been licensed, and the licensed spectrum is not being utilized efficiently. Cognitive Radio Networks (CRNs) are the kind of full duplex radio that automatically altered its transmission or reception parameters, in such a way that the entire wireless communication network of which it is a node communicates efficiently, while avoiding interference with primary or secondary users. In this chapter, the authors introduce the concept of security threats that may pose a serious attack in CRN. Due to the unique characteristics of CRN, such network is highly vulnerable to security attacks compared to wireless network or infrastructure-based wireless network. The main objective of this chapter is to assist CR designers and the CR application engineers to consider the security factors in the early development stage of CR techniques. Challenges and various security issues are explored with respect to OSI (Open Systems Interconnection) reference model. Various possible and attacks are discussed broadly and respective solutions are also proposed by this chapter. Different architectures and models are also explained, and compared with the existing models.


Sign in / Sign up

Export Citation Format

Share Document