Human Immunodeficiency Virus Reverse Transcriptase (HIV-RT)

Author(s):  
Anuradha Singh ◽  
Ramendra K. Singh

Reverse transcriptase (RT) is a multifunctional enzyme in the life cycle of human immunodeficiency virus and represents a primary target for drug discovery against HIV-1 infection. Two classes of RT inhibitors, the nucleoside and the non-nucleoside RT inhibitors, are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. This chapter deals with the salient features of HIV-RT that make it an attractive target for rational drug design and chemotherapeutic intervention in the management of acquired immunodeficiency syndrome. Further, the role of RT in the viral life cycle, the ways the drugs act to inhibit the normal functions of RT, and the mechanisms that the virus adapts to evade the available drugs have been discussed. Computational strategies used in rational drug design accompanied by a better understanding of RT, its mechanism of inhibition and drug resistance, discussed in this chapter, shall provide a better platform to develop effective RT inhibitors.

2006 ◽  
Vol 80 (24) ◽  
pp. 12283-12292 ◽  
Author(s):  
Dirk Jochmans ◽  
Jérôme Deval ◽  
Bart Kesteleyn ◽  
Herwig Van Marck ◽  
Eva Bettens ◽  
...  

ABSTRACT We have discovered a novel class of human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors that block the polymerization reaction in a mode distinct from those of the nucleoside or nucleotide RT inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs). For this class of indolopyridone compounds, steady-state kinetics revealed competitive inhibition with respect to the nucleotide substrate. Despite substantial structural differences with classical chain terminators or natural nucleotides, these data suggest that the nucleotide binding site of HIV RT may accommodate this novel class of RT inhibitors. To test this hypothesis, we have studied the mechanism of action of the prototype compound indolopyridone-1 (INDOPY-1) using a variety of complementary biochemical tools. Time course experiments with heteropolymeric templates showed “hot spots” for inhibition following the incorporation of pyrimidines (T>C). Moreover, binding studies and site-specific footprinting experiments revealed that INDOPY-1 traps the complex in the posttranslocational state, preventing binding and incorporation of the next complementary nucleotide. The novel mode of action translates into a unique resistance profile. While INDOPY-1 susceptibility is unaffected by mutations associated with NNRTI or multidrug NRTI resistance, mutations M184V and Y115F are associated with decreased susceptibility, and mutation K65R confers hypersusceptibility to INDOPY-1. This resistance profile provides additional evidence for active site binding. In conclusion, this class of indolopyridones can occupy the nucleotide binding site of HIV RT by forming a stable ternary complex whose stability is mainly dependent on the nature of the primer 3′ end.


2006 ◽  
Vol 50 (8) ◽  
pp. 2772-2781 ◽  
Author(s):  
Zhijun Zhang ◽  
Michelle Walker ◽  
Wen Xu ◽  
Jae Hoon Shim ◽  
Jean-Luc Girardet ◽  
...  

ABSTRACT Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.


2009 ◽  
Vol 83 (8) ◽  
pp. 3826-3833 ◽  
Author(s):  
Zandrea Ambrose ◽  
Brian D. Herman ◽  
Chih-Wei Sheen ◽  
Shannon Zelina ◽  
Katie L. Moore ◽  
...  

ABSTRACT We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity.


2015 ◽  
Vol 89 (23) ◽  
pp. 12058-12069 ◽  
Author(s):  
Shewit S. Tekeste ◽  
Thomas A. Wilkinson ◽  
Ethan M. Weiner ◽  
Xiaowen Xu ◽  
Jennifer T. Miller ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively.In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle.IMPORTANCETo establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.


2009 ◽  
Vol 53 (5) ◽  
pp. 2196-2198 ◽  
Author(s):  
Vici Varghese ◽  
Yumi Mitsuya ◽  
Rajin Shahriar ◽  
Michael H. Bachmann ◽  
W. Jeffrey Fessel ◽  
...  

ABSTRACT Q145M, a mutation in a conserved human immunodeficiency virus type 1 reverse transcriptase (RT) region, was reported to decrease susceptibility to multiple RT inhibitors. We report that Q145M and other Q145 mutations do not emerge with RT inhibitors nor decrease RT inhibitor susceptibility. Q145M should not, therefore, be considered an RT inhibitor resistance mutation.


Sign in / Sign up

Export Citation Format

Share Document