Audio and Speech Processing for Data Mining

Author(s):  
Zheng-Hua Tan

The explosive increase in computing power, network bandwidth and storage capacity has largely facilitated the production, transmission and storage of multimedia data. Compared to alpha-numeric database, non-text media such as audio, image and video are different in that they are unstructured by nature, and although containing rich information, they are not quite as expressive from the viewpoint of a contemporary computer. As a consequence, an overwhelming amount of data is created and then left unstructured and inaccessible, boosting the desire for efficient content management of these data. This has become a driving force of multimedia research and development, and has lead to a new field termed multimedia data mining. While text mining is relatively mature, mining information from non-text media is still in its infancy, but holds much promise for the future. In general, data mining the process of applying analytical approaches to large data sets to discover implicit, previously unknown, and potentially useful information. This process often involves three steps: data preprocessing, data mining and postprocessing (Tan, Steinbach, & Kumar, 2005). The first step is to transform the raw data into a more suitable format for subsequent data mining. The second step conducts the actual mining while the last one is implemented to validate and interpret the mining results. Data preprocessing is a broad area and is the part in data mining where essential techniques are highly dependent on data types. Different from textual data, which is typically based on a written language, image, video and some audio are inherently non-linguistic. Speech as a spoken language lies in between and often provides valuable information about the subjects, topics and concepts of multimedia content (Lee & Chen, 2005). The language nature of speech makes information extraction from speech less complicated yet more precise and accurate than from image and video. This fact motivates content based speech analysis for multimedia data mining and retrieval where audio and speech processing is a key, enabling technology (Ohtsuki, Bessho, Matsuo, Matsunaga, & Kayashi, 2006). Progress in this area can impact numerous business and government applications (Gilbert, Moore, & Zweig, 2005). Examples are discovering patterns and generating alarms for intelligence organizations as well as for call centers, analyzing customer preferences, and searching through vast audio warehouses.

2017 ◽  
pp. 83-99
Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


Author(s):  
Sivamathi Chokkalingam ◽  
Vijayarani S.

The term Big Data refers to large-scale information management and analysis technologies that exceed the capability of traditional data processing technologies. Big Data is differentiated from traditional technologies in three ways: volume, velocity and variety of data. Big data analytics is the process of analyzing large data sets which contains a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information. Since Big Data is new emerging field, there is a need for development of new technologies and algorithms for handling big data. The main objective of this paper is to provide knowledge about various research challenges of Big Data analytics. A brief overview of various types of Big Data analytics is discussed in this paper. For each analytics, the paper describes process steps and tools. A banking application is given for each analytics. Some of research challenges and possible solutions for those challenges of big data analytics are also discussed.


Author(s):  
Snehlata Mandal ◽  
Vivek Dubey

Data mining is a field of computer science which is used to discover new patterns for large data sets. Clustering is the task of discovering groups and structures in the data that are in some way or another similar without using known structures of data. Most of this data is temporal in nature. Data mining and business intelligence techniques are often used to discover patterns in such data; however, mining temporal relationships typically is a complex task. The paper proposes a data analysis and visualization technique for representing trends in temporal data using a clustering based approach by using a system that implements the cluster graph construct, which maps data to a two-dimensional directed graph that identifies trends in dominant data types over time. In this paper, a clustering-based technique is used, to visualize temporal data to identifying trends for controlling diabetes mellitus. Given the complexity of chronic disease prevention, diabetes risk prevention and assessment may be critical area for improving clinical decision support. Information visualization utilizes high processing capabilities of the human visual system to reveal patterns in data that are not so clear in non-visual data analysis.


Author(s):  
Brian C. Lovell ◽  
Shaokang Chen ◽  
Ting Shan

While the technology for mining text documents in large databases could be said to be relatively mature, the same cannot be said for mining other important data types such as speech, music, images and video. Multimedia data mining attracts considerable attention from researchers, but multimedia data mining is still at the experimental stage (Hsu, Lee & Zhang, 2002). Nowadays, the most effective way to search multimedia archives is to search the metadata of the archive, which are normally labeled manually by humans. This is already uneconomic or, in an increasing number of application areas, quite impossible because these data are being collected much faster than any group of humans could meaningfully label them — and the pace is accelerating, forming a veritable explosion of non-text data. Some driver applications are emerging from heightened security demands in the 21st century, postproduction of digital interactive television, and the recent deployment of a planetary sensor network overlaid on the internet backbone.


Sign in / Sign up

Export Citation Format

Share Document