Missing Data Approaches to Classification

Author(s):  
Tshilidzi Marwala

In this chapter, a classifier technique that is based on a missing data estimation framework that uses autoassociative multi-layer perceptron neural networks and genetic algorithms is proposed. The proposed method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey and compared to conventional feed-forward neural networks. The missing data approach based on the autoassociative network model proposed gives an accuracy of 92%, when compared to the accuracy of 84% obtained from the conventional feed-forward neural network models. The area under the receiver operating characteristics curve for the proposed autoassociative network model is 0.86 compared to 0.80 for the conventional feed-forward neural network model. The autoassociative network model proposed in this chapter, therefore, outperforms the conventional feed-forward neural network models and is an improved classifier. The reasons for this are: (1) the propagation of errors in the autoassociative network model is more distributed while for a conventional feed-forward network is more concentrated; and (2) there is no causality between the demographic properties and the HIV and, therefore, the HIV status does change the demographic properties and vice versa. Therefore, it is better to treat the problem as a missing data problem rather than a feed-forward problem.

2016 ◽  
Vol 20 (4) ◽  
pp. 1321-1331 ◽  
Author(s):  
Radisa Jovanovic ◽  
Aleksandra Sretenovic ◽  
Branislav Zivkovic

Feedforward neural network models are created for prediction of heating energy consumption of a university campus. Actual measured data are used for training and testing the models. Multistage neural network ensemble is proposed for the possible improvement of prediction accuracy. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as a member of the ensemble. Three different averaging methods (simple, weighted and median) for obtaining ensemble output are applied. Besides this conventional approach, single radial basis neural network in the second level is used to aggregate the selected ensemble members. It is shown that heating energy consumption can be predicted with better accuracy by using ensemble of neural networks than using the best trained single neural network, while the best results are achieved with multistage ensemble.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Tessfu Geteye Fantaye ◽  
Junqing Yu ◽  
Tulu Tilahun Hailu

Deep neural networks (DNNs) have shown a great achievement in acoustic modeling for speech recognition task. Of these networks, convolutional neural network (CNN) is an effective network for representing the local properties of the speech formants. However, CNN is not suitable for modeling the long-term context dependencies between speech signal frames. Recently, the recurrent neural networks (RNNs) have shown great abilities for modeling long-term context dependencies. However, the performance of RNNs is not good for low-resource speech recognition tasks, and is even worse than the conventional feed-forward neural networks. Moreover, these networks often overfit severely on the training corpus in the low-resource speech recognition tasks. This paper presents the results of our contributions to combine CNN and conventional RNN with gate, highway, and residual networks to reduce the above problems. The optimal neural network structures and training strategies for the proposed neural network models are explored. Experiments were conducted on the Amharic and Chaha datasets, as well as on the limited language packages (10-h) of the benchmark datasets released under the Intelligence Advanced Research Projects Activity (IARPA) Babel Program. The proposed neural network models achieve 0.1–42.79% relative performance improvements over their corresponding feed-forward DNN, CNN, bidirectional RNN (BRNN), or bidirectional gated recurrent unit (BGRU) baselines across six language collections. These approaches are promising candidates for developing better performance acoustic models for low-resource speech recognition tasks.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 262 ◽  
Author(s):  
Beong Yun

It is well known that feed-forward neural networks can be used for approximation to functions based on an appropriate activation function. In this paper, employing a new sigmoidal function with a parameter for an activation function, we consider a constructive feed-forward neural network approximation on a closed interval. The developed approximation method takes a simple form of a superposition of the parametric sigmoidal function. It is shown that the proposed method is very effective in approximation of discontinuous functions as well as continuous ones. For some examples, the availability of the presented method is demonstrated by comparing its numerical results with those of an existing neural network approximation method. Furthermore, the efficiency of the method in extended application to the multivariate function is also illustrated.


Author(s):  
Polad Geidarov

Introduction: Metric recognition methods make it possible to preliminarily and strictly determine the structures of feed-forward neural networks, namely, the number of neurons, layers, and connections based on the initial parameters of the recognition problem. They also make it possible to analytically calculate the synapse weights of network neurons based on metric expressions. The setup procedure for these networks includes a sequential analytical calculation of the values of each synapse weight in the weight table for neurons of the zero or first layer, which allows us to obtain a working feed-forward neural network at the initial stage without the use of training algorithms. Then feed-forward neural networks can be trained by well-known learning algorithms, which generally speeds up the process of their creation and training. Purpose: To determine how much time the process of calculating the values of weights requires and, accordingly, how reasonable it is to preliminarily calculate the weights of a feed-forward neural network. Results: An algorithm is proposed and implemented for the automated calculation of all values of synapse weight tables for the zero and first layers as applied to the task of recognizing black-and-white monochrome symbol images. The proposed algorithm is described in the Builder C++ software environment. The possibility of optimizing the process of calculating the weights of synapses in order to accelerate the entire algorithm is considered. The time spent on calculating these weights for different configurations of neural networks based on metric recognition methods is estimated. Examples of creating and calculating synapse weight tables according to the considered algorithm are given. According to them, the analytical calculation of the weights of a neural network takes just seconds or minutes, being in no way comparable to the time necessary for training a neural network. Practical relevance: Analytical calculation of the weights of a neural network can significantly accelerate the process of creating and training a feed-forward neural network. Based on the proposed algorithm, we can implement one for calculating three-dimensional weight tables for more complex images, either blackand-white or color grayscale ones.


Sign in / Sign up

Export Citation Format

Share Document