software environment
Recently Published Documents





2022 ◽  
Vol 2022 ◽  
pp. 1-17
Can Cui ◽  
Qing Lu ◽  
Chengchao Guo ◽  
Fuming Wang

Under the repeated action of traffic and thermal loads, a cement concrete pavement slab may partially lose contact with its base course, and voids may develop underneath the slab. Such distress will greatly impact the pavement performance. To fill the voids and restore the base support to the slab, the technology of polymer grouting has been increasingly adopted in recent years due to its advantages of quick application and high efficiency. There is, however, a lack of research on the mechanistic responses and performance of such a repaired rigid pavement under coupled influences of thermal and traffic loads. Existing literature has mainly focused on normal cement concrete pavement structures (i.e., without polymer grouted voids). This study intends to fill the research gap by investigating the time-domain characteristics of thermal stress response of a cement concrete pavement with underlying voids filled with polymer grout, along with design traffic loads. The finite element method was adopted with a 3-dimensional nonlinear temperature field within the pavement. A program module was developed in the Abaqus FEA software environment for temperature effect analysis. It was found that under the coupling action of thermal and traffic loads, thermal stress had a greater influence on the critical slab stress at the slab corner than those at other slab locations. Through the comparative analysis before and after polymer grouting repair, the critical tensile stress at the slab corner under the vehicle and thermal loads can be effectively reduced. The polymer performance is stable after three years.

Babatunde Olusegun Adewolu ◽  
Akshay Kumar Saha

Applications of Flexible AC Transmission Systems (FACTS) devices for enhancement of Available Transfer Capability (ATC) is gaining attention due to economic and technical limits of the conventional methods involving physical network expansions. FACTS allocation which is sine-qua-non to its performance is a major problem and it is being addressed in recent time with heuristic algorithms. Brain Storm Optimization Algorithms (BSOA) is a new heuristic and predicting optimization algorithms which revolutionizes human brainstorming process. BSOA is engaged for the optimum setting of FACTS devices for enhancement of ATC of a deregulated electrical power system network in this study. ATC enhancement, bus voltage deviation minimization and real power loss regulation are formulated into multi-objective problems for FACTS allocation purposes. Thyristor Controlled Series Capacitor (TCSC) is considered for simulation and analyses because of its fitness for active power control among other usefulness. ATC values are obtained for both normal and N-1-line outage contingency cases and these values are enhanced for different bilateral and multilateral power transactions. IEEE 30 Bus system is used for demonstration of the effectiveness of this approach in a Matlab software environment. Obtained enhanced ATC values for different transactions during normal evaluation cases are then compared with enhanced ATC values obtained with Particle Swarm Optimization (PSO) set TCSC technique under same trading. BSO behaved much like PSO throughout the achievements of other set objectives but performed better in ATC enhancement with 27.12 MW and 5.24 MW increase above enhanced ATC values achieved by the latter. The comparative of set objectives values relative to that obtained with PSO methods depict suitability and advantages of BSOA technique.

2022 ◽  
Elad H. Kivelevitch ◽  
Peter Khomchuk ◽  
Honglei Chen ◽  
Trevor Roose ◽  
Gael Goron ◽  

Е.С. Макарова ◽  
А.В. Асач ◽  
И.Л. Тхоржевский ◽  
В.Е. Фомин ◽  
А.В. Новотельнова ◽  

The estimation of the deviation in the measurements of thermal conductivity by the laser flash method for materials with different thermal conductivity coefficients, arising due to the presence of a graphite coating on the sample and the small thickness of the sample, is carried out. A computer model of the method was created in the Comsol Multiphysics software environment. For bulk samples with a graphite coating thickness of 20 μm, the deviation is 5.5 %. The thickness of bulk samples does not affect the measurement results. For materials with low thermal conductivity, a sharp increase in the deviation is observed, reaching 60%. For thermally conductive materials, the deviation is 16-18%. For thin samples less than 10 μm thick, the thickness of the graphite coating does not affect the measurement results. The decisive factor is the duration of the laser pulse.

Anatoliy Borysenko ◽  
Oleksandr Yenikieiev ◽  
Dmitry Zakharenkov ◽  
Ihor Zykov

The idea of monitoring the identity of the cylinder capacities of an internal combustion engine under conditions of incomplete information is proposed and a computer system is built on its basis. The signal of the instantaneous rotation speed of the crankshaft of the power unit was used as input information. In the development of the hardware architecture, injectors with piezoelectric actuators, the principle of direct digital control, and the principle of control with feedback on the state of fluctuations of the crankshaft rotation speed were used. The Laplace transform was used as a mathematical apparatus for analyzing the structural diagram of a computer system for programmed control of the processes of supplying fuel and air to the cylinders of the power unit. Mathematical models of the components of the hardware for controlling the processes of supplying the fuel-air mixture were constructed, and as a result of the analysis of the structural diagram of the computer system, the transfer function was obtained. Using the capabilities of the Matlab software environment, the transient and impulse transient characteristics of the system are obtained, the Nyquist hodograph is constructed, and the logarithmic amplitude-frequency characteristics of the hardware are established. It was found that the frequency characteristics of the mathematical model of a computer system have the necessary dynamic characteristics. Using the method of expansion into simple fractions, an expression is obtained for a discrete transfer function, the coefficients of the power polynomials of which are established using the method of determinants and computational capabilities of the Mathcad software environment. On the basis of a discrete transfer function, a scheme for computer modeling of the process of processing the signal of the instantaneous speed of rotation of the crankshaft by hardware is constructed. The output signal was obtained by computer simulation, as a result of the analysis of which the speed of the hardware for processing the input information was established.

Andrii Kychma ◽  
Yurii Novitskyi ◽  
Rostyslav Predko

The analysis of conditions of long operation of driving mechanisms of technological sites of firing and grinding at cement production is carried out in the work. Typical variants of mutual arrangement of crown pair elements in case of rectilinear axis of rotation of technological unit body and axial beating of gear ring, as well as variant of mutual arrangement of crown gear elements in case of curved axis of rotation of rotary unit body are considered. A technique for determining the total angle of skew of the teeth of the crown pair, taking into account the errors of manufacture and the relative position of the wheels of the open gear. On the basis of experimental data the dependences of the total skew angle of the teeth of the crown pair as a function of the rotation angle of the gear crown are constructed and the possible range of the total skew angle under different operating conditions of the considered large rotating units is determined. To assess the stress-strain state of the elements of the ring gear mounted on the furnace body, a solid model was created in the software environment Solid Works Simulation. As an example, the dependences of the change in the magnitude of the deformation of the teeth of the toothed crown in the plane of action of a uniformly distributed normal force are determined. Practical recommendations for improving the design of the crown gear pair are offered. Keywords: rotary kilns; mills; crown gear; toothed crown; the angle of skew of the teeth; finite element method

I. LEBID ◽  

Abstract. The aim of the paper is to justify the decision on cooperation with entities in the transport service market for foreign trade operations based on the assessment of logistics chain reliability and shipping time on different routes. The research findings will enable cargo owners and other stakeholders to make management decisions at the delivery planning stage optimizing all processes related to customs and logistics services. Methods. We assess the reliability of four logistics chain types based on a simulation model developed in the GPSS software environment using the method of statistical testing. Results. Customs and logistics service users challenge entities in the transport service market with the task of performing foreign trade operations in compliance with the highest level of quality and service reliability minimizing the cost of delivery and shipping time. The proposed method allows determining the probability of timely delivery of goods in different transportation directions as well as the reliability of the studied process. Scientific novelty. The obtained simulation results will make it possible to work out proposals and recommendations for customs and logistics service users on the choice of an optimal logistics chain type, taking into account its impact on shipping time and reliability of goods delivery. Practical value. The practical value of the research is that the proposed method will allow foreign economic entities to form logistics chains, taking into account available resources and the need to use the services of other companies in international goods delivery. In this case, the efficiency of a logistics chain can be further assessed by the shipping time and reliability for export/import operations.

Sergiy O. Rykov ◽  
Yurii V. Chepurnyi ◽  
Andrii V. Kopchak ◽  
Oksana V. Petrenko ◽  
Denis M. Chernogorskyi ◽  

Treatment of patients with post-traumatic orbital defects is relevant problem of ophthalmology and maxillofacial surgery. Residual diplopia or dislocation of the eyeball leads to disability, social maladaptation and development of psychoemotional disorders in patients. In this paper, we present an evaluation of treatment of patients with posttraumatic orbital wall defects based on the retrospective comparative analysis of CT data by computer simulation before and after reconstruction. When comparing the volume of the injured orbits before and after the operation (average volume difference was 2.7 ± 0.9 cm3), a significant improvement was found in terms of recovery of the orbital volume. The factors influencing the treatment effectiveness were determined based on the calculation of the volume of the orbits on the healthy and injured side in the software environment before and after the reconstruction. The causes of the detected cases of incomplete recovery of the orbital volume were analyzed. The solution to the problem of restoring the orbital volume is in the plane of restoring the geometry of the orbit because previous adaptation of the shape of the standard plate to its anatomical structure with overlapping defect on the stereolithographic model provided the best end result. Conclusions. Personalized adaptation of the implants to the shape of the orbit or individual production thereof can increase the accuracy of the orbital volume restoration, which can increase the effectiveness of eliminating complications such as enophthalmos and diplopia. The effectiveness of treatment of post-traumatic orbital defects by traditional methods directly depends on the severity of the damage, the degree of which determines the magnitude of the change in the orbital volume. However, the greater is the volume of the orbit changes as a result of the injury, the worse is the prognosis for its recovery. Development of the ways to individualize implants and evaluate their effectiveness is an important area for further research. Keywords: post-traumatic orbital defects, reconstructive surgery, computer simulation.

2021 ◽  
pp. 9-19

Target. To analyze the features of energy consumption of the building of the educational building No. 17 of the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" in the conditions of quarantine restrictions in the implementation of energy-saving heating schemes.Methodology. Dynamic energetic modeling of a university academic building created in the DesignBuilder software environment under normal and quarantine modes.Results. Recommendations for the implementation of energy-saving modes of heating the building of the academic building of the university during the period of distance learning when introducing quarantine restrictions in Ukraine.Scientific novelty. An integrated approach has been developed to an in-depth analysis of energy consumption under conditions of partial use of the premises of educational buildings during the quarantine period. It is substantiated that the use of premises with partial operation of the building requires additional unit costs for heating needs.Practical significance. Simulation dynamic modeling of the building's energy consumption for heating for various modes of operation and employment / use of premises of educational buildings during the quarantine period in Ukraine, the results of the study will allow to obtain a set of energy characteristics of the building as a whole and its individual rooms / zones for hourly changes in internal operating conditions and external climatic conditions. The use of the proposed scheme of operation of the heating system of the building of the educational building allows to reduce energy consumption during the heating period by 8,5% compared to energy consumption during normal operation, which is economically feasible in conditions of partial occupancy of the building during quarantine restrictions (during lockdown) and an unpredictable macroeconomic situation on the energy market, causing a trend towards an increase in prices for basic energy resources.

2021 ◽  
Vol 17 (4) ◽  
pp. 84-94
Egor I. Safonov ◽  
Oleg I. Sokolkov

The article describes the process of designing and creating a software environment that allows in automatic mode to create a realistic landscape. A review of existing approaches to landscape generation is carried out, which have a set of disadvantages taken into account when developing a software environment. A diagram of components and main classes is described. The developed subroutine that implements the polygon mesh generation algorithm provides an interface for creating and editing a mesh of hexagons on a plane, used for simplified work with biomes, as well as detailing the boundaries of polygons to give the landscape elements of randomness and, as a result, realism. The process uses the Diamond Square noise generation algorithm. The docking algorithm is designed to reduce the gaps between the heights of different biomes. The erosion algorithm uses particles generated on a height mapto carry soil particles in accordance with physical laws. The user interface of the application and the results of the algorithms are presented.

Sign in / Sign up

Export Citation Format

Share Document