Effective Mining of Weighted Fuzzy Association Rules

Author(s):  
Maybin Muyeba ◽  
M. Sulaiman Khan ◽  
Frans Coenen

A novel approach is presented for effectively mining weighted fuzzy association rules (ARs). The authors address the issue of invalidation of downward closure property (DCP) in weighted association rule mining where each item is assigned a weight according to its significance wrt some user defined criteria. Most works on weighted association rule mining do not address the downward closure property while some make assumptions to validate the property. This chapter generalizes the weighted association rule mining problem with binary and fuzzy attributes with weighted settings. Their methodology follows an Apriori approach but employs T-tree data structure to improve efficiency of counting itemsets. The authors’ approach avoids pre and post processing as opposed to most weighted association rule mining algorithms, thus eliminating the extra steps during rules generation. The chapter presents experimental results on both synthetic and real-data sets and a discussion on evaluating the proposed approach.

2013 ◽  
Vol 9 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Harihar Kalia ◽  
Satchidananda Dehuri ◽  
Ashish Ghosh

Association rule mining is one of the fundamental tasks of data mining. The conventional association rule mining algorithms, using crisp set, are meant for handling Boolean data. However, in real life quantitative data are voluminous and need careful attention for discovering knowledge. Therefore, to extract association rules from quantitative data, the dataset at hand must be partitioned into intervals, and then converted into Boolean type. In the sequel, it may suffer with the problem of sharp boundary. Hence, fuzzy association rules are developed as a sharp knife to solve the aforesaid problem by handling quantitative data using fuzzy set. In this paper, the authors present an updated survey of fuzzy association rule mining procedures along with a discussion and relevant pointers for further research.


Author(s):  
Emad Alsukhni ◽  
Ahmed AlEroud ◽  
Ahmad A. Saifan

Association rule mining is a very useful knowledge discovery technique to identify co-occurrence patterns in transactional data sets. In this article, the authors proposed an ontology-based framework to discover multi-dimensional association rules at different levels of a given ontology on user defined pre-processing constraints which may be identified using, 1) a hierarchy discovered in datasets; 2) the dimensions of those datasets; or 3) the features of each dimension. The proposed framework has post-processing constraints to drill down or roll up based on the rule level, making it possible to check the validity of the discovered rules in terms of support and confidence rule validity measures without re-applying association rule mining algorithms. The authors conducted several preliminary experiments to test the framework using the Titanic dataset by identifying the association rules after pre- and post-constraints are applied. The results have shown that the framework can be practically applied for rule pruning and discovering novel association rules.


Author(s):  
Mirko Boettcher ◽  
Georg Ruß ◽  
Detlef Nauck ◽  
Rudolf Kruse

Association rule mining typically produces large numbers of rules, thereby creating a second-order data mining problem: which of the generated rules are the most interesting? And: should interestingness be measured objectively or subjectively? To tackle the amount of rules that are created during the mining step, the authors propose the combination of two novel ideas: first, there is rule change mining, which is a novel extension to standard association rule mining which generates potentially interesting time-dependent features for an association rule. It does not require changes in the existing rule mining algorithms and can therefore be applied during post-mining of association rules. Second, the authors make use of the existing textual description of a rule and those newly derived objective features and combine them with a novel approach towards subjective interestingness by using relevance feedback methods from information retrieval. The combination of these two new approaches yields a powerful, intuitive way of exploring the typically vast set of association rules. It is able to combine objective and subjective measures of interestingness and will incorporate user feedback. Hence, it increases the probability of finding the most interesting rules given a large set of association rules.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhicong Kou ◽  
Lifeng Xi

An effective data mining method to automatically extract association rules between manufacturing capabilities and product features from the available historical data is essential for an efficient and cost-effective product development and production. This paper proposes a new binary particle swarm optimization- (BPSO-) based association rule mining (BPSO-ARM) method for discovering the hidden relationships between machine capabilities and product features. In particular, BPSO-ARM does not need to predefine thresholds of minimum support and confidence, which improves its applicability in real-world industrial cases. Moreover, a novel overlapping measure indication is further proposed to eliminate those lower quality rules to further improve the applicability of BPSO-ARM. The effectiveness of BPSO-ARM is demonstrated on a benchmark case and an industrial case about the automotive part manufacturing. The performance comparison indicates that BPSO-ARM outperforms other regular methods (e.g., Apriori) for ARM. The experimental results indicate that BPSO-ARM is capable of discovering important association rules between machine capabilities and product features. This will help support planners and engineers for the new product design and manufacturing.


A Data mining is the method of extracting useful information from various repositories such as Relational Database, Transaction database, spatial database, Temporal and Time-series database, Data Warehouses, World Wide Web. Various functionalities of Data mining include Characterization and Discrimination, Classification and prediction, Association Rule Mining, Cluster analysis, Evolutionary analysis. Association Rule mining is one of the most important techniques of Data Mining, that aims at extracting interesting relationships within the data. In this paper we study various Association Rule mining algorithms, also compare them by using synthetic data sets, and we provide the results obtained from the experimental analysis


Semantic Web ◽  
2013 ◽  
pp. 76-96
Author(s):  
Luca Cagliero ◽  
Tania Cerquitelli ◽  
Paolo Garza

This paper presents a novel semi-automatic approach to construct conceptual ontologies over structured data by exploiting both the schema and content of the input dataset. It effectively combines two well-founded database and data mining techniques, i.e., functional dependency discovery and association rule mining, to support domain experts in the construction of meaningful ontologies, tailored to the analyzed data, by using Description Logic (DL). To this aim, functional dependencies are first discovered to highlight valuable conceptual relationships among attributes of the data schema (i.e., among concepts). The set of discovered correlations effectively support analysts in the assertion of the Tbox ontological statements (i.e., the statements involving shared data conceptualizations and their relationships). Then, the analyst-validated dependencies are exploited to drive the association rule mining process. Association rules represent relevant and hidden correlations among data content and they are used to provide valuable knowledge at the instance level. The pushing of functional dependency constraints into the rule mining process allows analysts to look into and exploit only the most significant data item recurrences in the assertion of the Abox ontological statements (i.e., the statements involving concept instances and their relationships).


Author(s):  
Carson Kai-Sang Leung

The problem of association rule mining was introduced in 1993 (Agrawal et al., 1993). Since then, it has been the subject of numerous studies. Most of these studies focused on either performance issues or functionality issues. The former considered how to compute association rules efficiently, whereas the latter considered what kinds of rules to compute. Examples of the former include the Apriori-based mining framework (Agrawal & Srikant, 1994), its performance enhancements (Park et al., 1997; Leung et al., 2002), and the tree-based mining framework (Han et al., 2000); examples of the latter include extensions of the initial notion of association rules to other rules such as dependence rules (Silverstein et al., 1998) and ratio rules (Korn et al., 1998). In general, most of these studies basically considered the data mining exercise in isolation. They did not explore how data mining can interact with the human user, which is a key component in the broader picture of knowledge discovery in databases. Hence, they provided little or no support for user focus. Consequently, the user usually needs to wait for a long period of time to get numerous association rules, out of which only a small fraction may be interesting to the user. In other words, the user often incurs a high computational cost that is disproportionate to what he wants to get. This calls for constraint-based association rule mining.


Author(s):  
Ling Zhou ◽  
Stephen Yau

Association rule mining among frequent items has been extensively studied in data mining research. However, in recent years, there is an increasing demand for mining infrequent items (such as rare but expensive items). Since exploring interesting relationships among infrequent items has not been discussed much in the literature, in this chapter, the authors propose two simple, practical and effective schemes to mine association rules among rare items. Their algorithms can also be applied to frequent items with bounded length. Experiments are performed on the well-known IBM synthetic database. The authors’ schemes compare favorably to Apriori and FP-growth under the situation being evaluated. In addition, they explore quantitative association rule mining in transactional databases among infrequent items by associating quantities of items: some interesting examples are drawn to illustrate the significance of such mining.


Author(s):  
Carson K.-S. Leung ◽  
Fan Jiang ◽  
Edson M. Dela Cruz ◽  
Vijay Sekar Elango

Collaborative filtering uses data mining and analysis to develop a system that helps users make appropriate decisions in real-life applications by removing redundant information and providing valuable to information users. Data mining aims to extract from data the implicit, previously unknown and potentially useful information such as association rules that reveals relationships between frequently co-occurring patterns in antecedent and consequent parts of association rules. This chapter presents an algorithm called CF-Miner for collaborative filtering with association rule miner. The CF-Miner algorithm first constructs bitwise data structures to capture important contents in the data. It then finds frequent patterns from the bitwise structures. Based on the mined frequent patterns, the algorithm forms association rules. Finally, the algorithm ranks the mined association rules to recommend appropriate merchandise products, goods or services to users. Evaluation results show the effectiveness of CF-Miner in using association rule mining in collaborative filtering.


Sign in / Sign up

Export Citation Format

Share Document