Comprehensive Modelling of ANN

2022 ◽  
pp. 31-40
Author(s):  
Meghna Babubhai Patel ◽  
Jagruti N. Patel ◽  
Upasana M. Bhilota

An artificial neural network (ANN) is an information processing modelling of the human brain inspired by the way biological nervous systems behave. There are about 100 billion neurons in the human brain. Each neuron has a connection point between 1,000 and 100,000. The key element of this paradigm is the novel structure of the information processing system. In the human brain, information is stored in such a way as to be distributed, and we can extract more than one piece of this information when necessary from our memory in parallel. We are not mistaken when we say that a human brain is made up of thousands of very powerful parallel processors. It is composed of a large number of highly interconnected processing elements (neurons) working in union to solve specific problems. ANN, like people, learns by example. The chapter includes characteristics of artificial neural networks, structure of ANN, elements of artificial neural networks, pros and cons of ANN.

Author(s):  
Meghna Babubhai Patel ◽  
Jagruti N. Patel ◽  
Upasana M. Bhilota

An artificial neural network (ANN) is an information processing modelling of the human brain inspired by the way biological nervous systems behave. There are about 100 billion neurons in the human brain. Each neuron has a connection point between 1,000 and 100,000. The key element of this paradigm is the novel structure of the information processing system. In the human brain, information is stored in such a way as to be distributed, and we can extract more than one piece of this information when necessary from our memory in parallel. We are not mistaken when we say that a human brain is made up of thousands of very powerful parallel processors. It is composed of a large number of highly interconnected processing elements (neurons) working in union to solve specific problems. ANN, like people, learns by example. The chapter includes characteristics of artificial neural networks, structure of ANN, elements of artificial neural networks, pros and cons of ANN.


Author(s):  
А.В. Милов

В статье представлены математические модели на основе искусственных нейронных сетей, используемые для управления индукционной пайкой. Обучение искусственных нейронных сетей производилось с использованием многокритериального генетического алгоритма FFGA. This article presents mathematical models based on artificial neural networks used to control induction soldering. The artificial neural networks were trained using the FFGA multicriteria genetic algorithm. The developed models allow to control induction soldering under conditions of incomplete or unreliable information, as well as under conditions of complete absence of information about the technological process.


Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


2022 ◽  
pp. 1-30
Author(s):  
Arunaben Prahladbhai Gurjar ◽  
Shitalben Bhagubhai Patel

The new era of the world uses artificial intelligence (AI) and machine learning. The combination of AI and machine learning is called artificial neural network (ANN). Artificial neural network can be used as hardware or software-based components. Different topology and learning algorithms are used in artificial neural networks. Artificial neural network works similarly to the functionality of the human nervous system. ANN is working as a nonlinear computing model based on activities performed by human brain such as classification, prediction, decision making, visualization just by considering previous experience. ANN is used to solve complex, hard-to-manage problems by accruing knowledge about the environment. There are different types of artificial neural networks available in machine learning. All types of artificial neural networks work based of mathematical operation and require a set of parameters to get results. This chapter gives overview on the various types of neural networks like feed forward, recurrent, feedback, classification-predication.


2016 ◽  
pp. 89-112
Author(s):  
Pushpendu Kar ◽  
Anusua Das

The recent craze for artificial neural networks has spread its roots towards the development of neuroscience, pattern recognition, machine learning and artificial intelligence. The theoretical neuroscience is basically converging towards the basic concept that the brain acts as a complex and decentralized computer which can perform rigorous calculations in a different approach compared to the conventional digital computers. The motivation behind the study of neural networks is due to their similarity in the structure of the human central nervous system. The elementary processing component of an Artificial Neural Network (ANN) is called as ‘Neuron'. A large number of neurons interconnected with each other mimic the biological neural network and form an ANN. Learning is an inevitable process that can be used to train an ANN. We can only transfer knowledge to the neural network by the learning procedure. This chapter presents the detailed concepts of artificial neural networks in addition to some significant aspects on the present research work.


2005 ◽  
Vol 32 (4) ◽  
pp. 644-657 ◽  
Author(s):  
Ayman Ahmed Seleemah

Different relationships have been proposed by codes and researchers for predicting the shear capacity of members without transverse reinforcement. In this paper, the applicability of the artificial neural network (ANN) technique as an analytical alternative to existing methods for predicting this shear capacity is investigated using a critically reviewed and agreed upon database of experimental work that serves as a basis of comparison and (or) assessment of existing and new relationships. Both ANN and eight different codes and researcher's predictions of the shear capacity of the specimens of the database were compared. The ANN predictions are much superior to those of any of the current available relationships.Key words: artificial neural networks, shear capacity, transverse reinforcement, beams.


2011 ◽  
Vol 17 (3) ◽  
pp. 340-347 ◽  
Author(s):  
S. Umit Dikmen ◽  
Murat Sonmez

Artificial Neural Networks (ANN) is a problem solving technique imitating the basic working principles of the human brain. The formwork labour cost constitutes an important part within the costs of the reinforced concrete frame buildings. This study suggests a method based on artificial neural networks developed for estimating the required manhours for the formwork activity of such buildings. The introduced method has been verified in the study with reference to the test conducted involving two case studies. In all cases, the model produced results reasonably close to actual field measurements. The model is a simple and quick tool for the estimators and planners to aid them in their work. Santrauka Dirbtiniai neuroniniai tinklai (DNT) – tai problemų sprendimo metodas, imituojantis pagrindinius žmogaus smegenų veiklos principus. Statant gelžbetoninius karkasinius pastatus, nemažą sąnaudų dalį sudaro klojinių ruošimas. Šiame tyrime siūlomas dirbtiniais neuroniniais tinklais pagrįstas metodas, kurio paskirtis – apskaičiuoti, kiek žmogaus darbo valandų reikės ruošti klojinius tokiuose pastatuose. Pristatomas metodas tyrimo metu patikrintas remiantis bandymu, susijusiu su dviem atvejo tyrimais. Visais atvejais modelio pateikti rezultatai buvo gana artimi faktiniams matavimams. Modelis – tai paprastas ir greitai naudojamas įrankis, kuris pravers sąmatininkams ir planuotojams.


2001 ◽  
Vol 38 (1) ◽  
pp. 200-207 ◽  
Author(s):  
M Chiru-Danzer ◽  
C H Juang ◽  
R A Christopher ◽  
J Suber

In the present study, artificial neural network (ANN) models based on field performance data are developed for predicting liquefaction-induced horizontal displacements. A database consisting of 443 measurements of horizontal displacements forms the basis for ANN modeling and analysis. The ANN model resulted in predictive capabilities that surpass those of published methods. A sensitivity analysis of the ANN model is conducted to evaluate the effect of each individual input variable on the calculated horizontal displacement. The newly developed ANN model is compared with and shown to be more accurate than other existing methods in predicting liquefaction-induced horizontal displacements.Key words: liquefaction, artificial neural networks, lateral spreading.


Sign in / Sign up

Export Citation Format

Share Document