Developing Strategies in the Sharing Economy

Author(s):  
Ramona Diana Leon

The sharing economy is challenging the traditional business models and strategies by encouraging collaboration, non-ownership, temporal access, and redistribution of goods and/or services. Within this framework, the current chapter aims to examine how managers influence, voluntarily or involuntarily, the reliability of a managerial early warning system, based on an artificial neural network. The analysis focuses on seven Romanian sustainable knowledge-based organizations and brings forward that managers tend to influence the results provided by a managerial early warning system based on artificial neural network, voluntarily and involuntarily. On the one hand, they are the ones who consciously decide which departments and persons are involved in establishing the structure of the managerial early warning system. On the other hand, they unconsciously influence the structure of the managerial early warning system through the authority they exercise during the managerial debate.

2022 ◽  
pp. 1224-1245
Author(s):  
Ramona Diana Leon

The sharing economy is challenging the traditional business models and strategies by encouraging collaboration, non-ownership, temporal access, and redistribution of goods and/or services. Within this framework, the current chapter aims to examine how managers influence, voluntarily or involuntarily, the reliability of a managerial early warning system, based on an artificial neural network. The analysis focuses on seven Romanian sustainable knowledge-based organizations and brings forward that managers tend to influence the results provided by a managerial early warning system based on artificial neural network, voluntarily and involuntarily. On the one hand, they are the ones who consciously decide which departments and persons are involved in establishing the structure of the managerial early warning system. On the other hand, they unconsciously influence the structure of the managerial early warning system through the authority they exercise during the managerial debate.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ivana Sušanj ◽  
Nevenka Ožanić ◽  
Ivan Marović

In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Aghus Sofwan ◽  
Sumardi ◽  
Najib ◽  
Indrah Wendah Atma Bhirawa

Landslide is a natural sloping ground movement disaster that can occur due to several factors such as high rainfall, soil moisture in the depth of the soil of an area, vibrations experienced in the region, and the slope of the ground structure. A system that can deliver these factor values into the levels of vulnerability of landslide disasters is needed. The system uses Arduino Mega 2560 to process the level of vulnerability. It can predict the moment and the probability of the disaster occurring as an early warning system. The artificial neural network (ANN) intelligent system can expect an event of a disaster. The designed ANN used five parameters causing landslide as input data: rainfall, slope, soil moisture on the surface, soil moisture in the ground’s depth, and soil vibration. The ANN system output delivered three-level conditions: the safe, the standby, and the hazardous. The feed-forward backpropagation (FFBP) and the cascade forward backpropagation (CFBP) methods were analyzed. The performance of both methods was compared in terms of minimum square error (MSE). The MSE results of FFBP and CFBP in the safe, the standby, and the hazardous conditions were 0.017076 and 0.034952; 0.049597 and 0.046764; 0.062105 and 0.060355; respectively. The results point to the supremacy of CFBP to FFBP in standby and hazardous conditions. Therefore, the CFBP is implemented into the hardware of the early warning system.


2006 ◽  
Vol 45 (06) ◽  
pp. 610-621 ◽  
Author(s):  
A. T. Tzallas ◽  
P. S. Karvelis ◽  
C. D. Katsis ◽  
S. Giannopoulos ◽  
S. Konitsiotis ◽  
...  

Summary Objectives: The aim of the paper is to analyze transient events in inter-ictal EEG recordings, and classify epileptic activity into focal or generalized epilepsy using an automated method. Methods: A two-stage approach is proposed. In the first stage the observed transient events of a single channel are classified into four categories: epileptic spike (ES), muscle activity (EMG), eye blinking activity (EOG), and sharp alpha activity (SAA). The process is based on an artificial neural network. Different artificial neural network architectures have been tried and the network having the lowest error has been selected using the hold out approach. In the second stage a knowledge-based system is used to produce diagnosis for focal or generalized epileptic activity. Results: The classification of transient events reported high overall accuracy (84.48%), while the knowledge-based system for epilepsy diagnosis correctly classified nine out of ten cases. Conclusions: The proposed method is advantageous since it effectively detects and classifies the undesirable activity into appropriate categories and produces a final outcome related to the existence of epilepsy.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hari P. N. Nagarajan ◽  
Hossein Mokhtarian ◽  
Hesam Jafarian ◽  
Saoussen Dimassi ◽  
Shahriar Bakrani-Balani ◽  
...  

Additive manufacturing (AM) continues to rise in popularity due to its various advantages over traditional manufacturing processes. AM interests industry, but achieving repeatable production quality remains problematic for many AM technologies. Thus, modeling different process variables in AM using machine learning can be highly beneficial in creating useful knowledge of the process. Such developed artificial neural network (ANN) models would aid designers and manufacturers to make informed decisions about their products and processes. However, it is challenging to define an appropriate ANN topology that captures the AM system behavior. Toward that goal, an approach combining dimensional analysis conceptual modeling (DACM) and classical ANNs is proposed to create a new type of knowledge-based ANN (KB-ANN). This approach integrates existing literature and expert knowledge of the AM process to define a topology for the KB-ANN model. The proposed KB-ANN is a hybrid learning network that encompasses topological zones derived from knowledge of the process and other zones where missing knowledge is modeled using classical ANNs. The usefulness of the method is demonstrated using a case study to model wall thickness, part height, and total part mass in a fused deposition modeling (FDM) process. The KB-ANN-based model for FDM has the same performance with better generalization capabilities using fewer weights trained, when compared to a classical ANN.


Sign in / Sign up

Export Citation Format

Share Document