Graph-Covering-Based Architectural Synthesis for Programmable Digital Microfluidic Biochips
Digital microfluidic technology has been extensively applied in various biomedical fields. Different from application-specific biochips, a programmable design has several advantages such as dynamic reconfigurability and general applicability. Basically, a programmable biochip divides the chip into several virtual modules. However, in the previous design, a virtual module can execute only one operation at a time. In this paper, the authors propose a new multi-functional module for programmable digital microfluidic biochips, which can execute two operations simultaneously. Moreover, they also propose a binding and scheduling algorithm for programmable biochips, which is motivated from a graph-covering problem. Experiment demonstrates that their algorithm can reduce the completion time of the applications compared with the previous approaches.