An Iterated Local Search Algorithm for Fuel Consumption Optimization of Vehicle Routing Problems

2011 ◽  
Vol 148-149 ◽  
pp. 1248-1251
Author(s):  
Xu Dong Wu

The iterated local search algorithm has been widely used in combinatorial optimization problems. A new fuel consumption objective for the vehicle routing problems was presented in this paper. A fuel consumption modal of the vehicle load is introduced and an improved iterated local search algorithm is used for the problem. An initial solution is generated by the Solomon I1 algorithm, and then the iterated local search algorithm is proposed for the fuel consumption optimization.

2017 ◽  
Vol 26 (02) ◽  
pp. 1750004
Author(s):  
Quang Dung Pham ◽  
Kim Thu Le ◽  
Hoang Thanh Nguyen ◽  
Van Dinh Pham ◽  
Quoc Trung Bui

Vehicle routing is a class of combinatorial optimization problems arising in the industry of transportation and logistics. The goal of these problems is to compute an optimal route plan for a set of vehicles for serving transport requests of customers. There are many variants of the vehicle routing problems: routing for delivering goods, routing for demand responsive transport (taxi, school bus, …). Each problem might have different constraints, objectives. In this paper, we introduce a Constraint-Based Local Search (CBLS) framework for general offline and online vehicle routing problems. We extend existing neighborhood structures in the literature by proposing new neighborhoods to facilitate the resolution of different class of vehicle routing problems in a unified platform. A novel feature of the framework is the available APIs for online vehicle routing problems where requests arrive online during the execution of the computed route plan. Experimental results on three vehicle routing problems (the min-max capacitated vehicle routing problem, the multi-vehicle covering tour problem, and the online people-andparcel share-a-ride taxis problem) show the modelling flexibility, genericity, extensibility and efficiency of the proposed framework.


2008 ◽  
Vol 156 (11) ◽  
pp. 2050-2069 ◽  
Author(s):  
Toshihide Ibaraki ◽  
Shinji Imahori ◽  
Koji Nonobe ◽  
Kensuke Sobue ◽  
Takeaki Uno ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Weizhen Rao ◽  
Feng Liu ◽  
Shengbin Wang

The classical model of vehicle routing problem (VRP) generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP) becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS). TOHLS is based on a hybrid local search algorithm (HLS) that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.


2018 ◽  
Vol 7 (1) ◽  
pp. 32-56
Author(s):  
Thiago A.S. Masutti ◽  
Leandro Nunes de Castro

Combinatorial optimization problems are broadly studied in the literature. On the one hand, their challenging characteristics, such as the constraints and number of potential solutions, inspires their use to test new solution techniques. On the other hand, the practical application of these problems provides support of daily tasks of people and companies. Vehicle routing problems constitute a well-known class of combinatorial optimization problems, from which the Traveling Salesman Problem (TSP) is one of the most elementary ones. TSP corresponds to finding the shortest route that visits all cities within a path returning to the start city. Despite its simplicity, the difficulty in finding its exact solution and its direct application in practical problems in multiple areas make it one of the most studied problems in the literature. Algorithms inspired by biological phenomena are being successfully applied to solve optimization tasks, mainly combinatorial optimization problems. Those inspired by the collective behavior of insects produce good results for solving such problems. This article proposes the VRoptBees, a framework inspired by honeybee behavior to tackle vehicle routing problems. The framework provides a flexible and modular tool to easily build solutions to vehicle routing problems. Together with the framework, two examples of implementation are described, one to solve the TSP and the other to solve the Capacitated Vehicle Routing Problem (CVRP). Tests were conducted with benchmark instances from the literature, showing competitive results.


Sign in / Sign up

Export Citation Format

Share Document