Analysis of Different Seismic Response between Low and High Stories of Buildings

2012 ◽  
Vol 166-169 ◽  
pp. 2115-2119
Author(s):  
Kun Xia ◽  
Ling Xin Zhang ◽  
Jie Ping Liu ◽  
Lin Dong

In general, the higher story of the building, the stronger effects on humans and objects. In this paper, seismic response analysis for two buildings is carried out. The time histories of displacement, velocity, acceleration and acceleration response spectrum of each floor are obtained. By analyzing these results, the phenomenon of "the higher story of the building, the stronger effects on humans and objects" is demonstrated. And reasons of this phenomenon are preliminary analyzed.

2020 ◽  
Author(s):  
Jingyan Lan ◽  
Juan Liu ◽  
Xing Song

Abstract. In the complex medium system of sea area, the overlying sea water and the surface soft soil have a significant impact on the seafloor ground motion, which brings great seismic risk to the safety of offshore engineering structures. In this paper, four sets of typical free field models are constructed and established, which are land model, land model with surface soft soil, sea model and sea model with surface soft soil. The dynamic finite difference method is used to carry out two-dimensional seismic response analysis of typical free field based on the input forms about P and SV wave. By comparing the seismic response analysis results of four groups of calculation models, the effects of overlying seawater and soft soil on peak acceleration and acceleration response spectrum are studied. The results show that when SV wave is input, the peak acceleration and response spectrum of the surface of soft soil on the surface and the seabed surface can be amplified, while the overlying sea water can significantly reduce the ground motion. When P wave is used, the effect of overlying seawater and soft soil on peak acceleration and response spectrum of surface and seabed can be ignored. The peak acceleration decreases first and then increases from the bottom to the surface, and the difference of peak acceleration calculated by four free field models is not obvious. The results show that the overlying sea water and the surface soft soil layer have little effect on the peak acceleration of ground motion below the surface.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jie Su ◽  
Zhenghua Zhou ◽  
You Zhou ◽  
Xiaojun Li ◽  
Qing Dong ◽  
...  

Based on the engineering geological data of a nuclear power plant site, nine engineering geological profiles were created with hard interlayers of different thicknesses. The equivalent linearization method of seismic motion segment-input used for one-dimensional nonlinear seismic response analysis was applied to study the effect of the interlayer thickness on the peak acceleration and the acceleration response spectra of the site seismic response. The results showed that there was an obvious influence of hard interlayer thickness on site seismic responses. With the increase of hard interlayer thickness, the site nonlinear effect on seismic responses decreased. Under the same thickness of the hard interlayer, the nonlinear effect of the site was strengthened with the higher input peak acceleration. In addition, the short-period acceleration response spectrum was found to be significantly influenced by the hard interlayer and showed that the longer the period, the less influence of the hard interlayer on the acceleration response spectrum coordinates. Moreover, the influenced frequency band was wider with the increase in the thickness of hard interlayer.


2012 ◽  
Vol 5 ◽  
pp. 183-188
Author(s):  
Lian Zhen Zhang ◽  
Tian Liang Chen

Self-anchored suspension bridge is widely used in Chinese City bridge engineering for the past few years. Because the anchorage system of main cable has been changed from anchorage blocks to the ends of the girder, its’ dynamic mechanics behavior is greatly distinguished with the traditional earth anchored suspension bridge. This paper studies the dynamic characteristics and seismic response of one large-span self-anchored suspension bridge which is located in China/Shenyang city. Using a spatial dynamic analysis finite element mode, the dynamic characteristics are calculated out. An artificial seismic wave is adopted as the ground motion input which is fitted with acceleration response spectrum according to the Chinese bridge anti-seismic design code. Time-integration method is used to get the seismic time-history response. Geometry nonlinear effect is considered during the time-history analysis. At last, the dynamic characteristics and the behavior of earthquake response of this type bridge structure are discussed clearly. The research results can be used as the reference of seismic response analysis and anti-seismic design for the same type of bridge.


Author(s):  
Michael O’Leary ◽  
William Godfrey

A partially buried fixed-base finite element model of a typical safety-related nuclear structure is analyzed for earthquake loads by the time history method, the response spectrum method, and the equivalent static load method. The spectra-consistent artificial time histories are generated with seed time histories in accordance with Standard Review Plan 3.7.1: Seismic Design Parameters [1] with target spectra based on Regulatory Guide 1.60: Design Response Spectra for Seismic Design of Nuclear Power Plants [2]. The response spectrum analyses are performed with the same target spectra used in generating the artificial time histories. The equivalent static loads are based on the nodal zero period accelerations from the fixed-base time history analyses. The seismic responses in a column in the structure are combined using algebraic sum, square root of the sum of the squares (SRSS), and the 100-40-40 rule in accordance with Regulatory Guide 1.92: Combining modal responses and spatial components in seismic response analysis [3]. The equivalent static load method is applied according to ASCE 4-15: Seismic Analysis of Safety-Related Nuclear Structures [4]. The resulting design forces and required reinforcement for a column in the structure are compared for each method along with the corresponding computational demand.


Sign in / Sign up

Export Citation Format

Share Document