Creep Analysis of Steel Structures in High Temperature Using Finite Element Method

2012 ◽  
Vol 204-208 ◽  
pp. 1267-1270
Author(s):  
Yue Song Liu ◽  
Yu Ching Wu

To predict the behavior of steel structure under fire effect, the material property is very important in the analysis of steel structure at high temperature. This paper adopted finite element method to investigate the nonlinear behavior of steel structures under high temperature and creep conditions. We studied the creep strains with different models of creep. Differences between these models are highlighted. Furthermore, the importance of creep effect in fire is discussed.

2003 ◽  
Vol 125 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Padmanabhan Seshaiyer ◽  
Jay D. Humphrey

Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.


1990 ◽  
Vol 112 (3) ◽  
pp. 266-272 ◽  
Author(s):  
H. Song ◽  
A. Moshaiov

The axisymmetric distortion in girth-welded pipes is studied in this paper. A model is developed based on the fact that only a small part of the pipe near the welding arc undergoes high temperature changes, and thus behaves thermo-elastic-plastically, while the rest of the structure is elastic in nature and may, at most, have some thermo-elastic effects. The model is shown to match Finite Element Method in predicting the overall approximated axisymmetric shrinkage in girth-welded pipes. A qualitative agreement with published analytical and experimental results is achieved as well.


2007 ◽  
Vol 551-552 ◽  
pp. 347-353
Author(s):  
K. Lei ◽  
Kai Feng Zhang ◽  
M.J. Tong

Scale effects in the high temperature gas pressure forming of electrodeposited fine-grained copper thin sheets were investigated by a series of tests at various forming temperatures and die apertures. The average as-deposited copper grain size was 5 μm. The geometrical parameters of the bugling die system and the thickness of copper sheet varied in proportion. Different radius hemisphere parts from 0.5mm to 5mm were obtained at a strain rate of 5.0×10−4 s−1, which was controlled by pressure forces curves determined in terms of a finite element method (FEM) based on constitutive equation proposed by Backoften in 1964. The experimental relative bulging height (RBH) values were measured, and compared with that predicted by the same finite element method (FEM). It was found that the experimental values of large scale parts approach to simulated values, whereas the experimental values of small scale parts were quite different from simulated values. In order to explain these phenomena, a grain-rotation-weakened mechanism was proposed.


Sign in / Sign up

Export Citation Format

Share Document