qualitative agreement
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 34)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
B. Blok ◽  
R. Segev

AbstractWe study the influence of quantum interference and colour flow on three point correlations described by asymmetric cumulants in high multiplicity events in pp collisions. We use the model previously developed for the study of the collectivity in symmetric cumulants. We show that the resulting three point asymmetric cumulant is in qualitative agreement with the experimental data for the same parameters of the model as it was with the symmetric cumulants. Our results show that the initial state correlations must play a major role and may be even dominant in the explanation of the correlations in high multiplicity pp events.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Prabakaran ◽  
Sherlyn Jemimah ◽  
Puneet Rawat ◽  
Divya Sharma ◽  
M. Michael Gromiha

AbstractMitigating the devastating effect of COVID-19 is necessary to control the infectivity and mortality rates. Hence, several strategies such as quarantine of exposed and infected individuals and restricting movement through lockdown of geographical regions have been implemented in most countries. On the other hand, standard SEIR based mathematical models have been developed to understand the disease dynamics of COVID-19, and the proper inclusion of these restrictions is the rate-limiting step for the success of these models. In this work, we have developed a hybrid Susceptible-Exposed-Infected-Quarantined-Removed (SEIQR) model to explore the influence of quarantine and lockdown on disease propagation dynamics. The model is multi-compartmental, and it considers everyday variations in lockdown regulations, testing rate and quarantine individuals. Our model predicts a considerable difference in reported and actual recovered and deceased cases in qualitative agreement with recent reports.


2021 ◽  
Vol 922 (1) ◽  
pp. L6
Author(s):  
Andrea Franchetto ◽  
Stephanie Tonnesen ◽  
Bianca M. Poggianti ◽  
Benedetta Vulcani ◽  
Marco Gullieuszik ◽  
...  

Abstract Hydrodynamical simulations show that the ram pressure stripping in galaxy clusters fosters a strong interaction between stripped interstellar medium (ISM) and the surrounding medium, with the possibility of intracluster medium (ICM) cooling into cold gas clouds. Exploiting the MUSE observation of three jellyfish galaxies from the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey, we explore the gas metallicity of star-forming clumps in their gas tails. We find that the oxygen abundance of the stripped gas decreases as a function of the distance from the parent galaxy disk; the observed metallicity profiles indicate that more than 40% of the most metal-poor stripped clouds are constituted by cooled ICM, in qualitative agreement with simulations that predict mixing between the metal-rich ISM and the metal-poor ICM.


2021 ◽  
Author(s):  
Julia Jäger ◽  
Pintu Patra ◽  
Cecilia P. Sanchez ◽  
Michael Lanzer ◽  
Ulrich S. Schwarz

AbstractRed blood cells can withstand the harsh mechanical conditions in the vasculature only because the bending rigidity of their plasma membrane is complemented by the shear elasticity of the underlying spectrin-actin network. During an infection by the malaria parasite Plasmodium falciparum, the parasite mines host actin from the junctional complexes and establishes a system of adhesive knobs, whose main structural component is the knob-associated histidine rich protein (KAHRP) secreted by the parasite. Here we aim at a mechanistic understanding of this dramatic transformation process. We have developed a particle-based computational model for the cytoskeleton of red blood cells and simulated it with Brownian dynamics to predict the mechanical changes resulting from actin mining and KAHRP-clustering. Our simulations include the three-dimensional conformations of the semi-flexible spectrin chains, the capping of the actin protofilaments and several established binding sites for KAHRP. For the healthy red blood cell, we find that incorporation of actin protofilaments leads to two regimes in the shear response. Actin mining decreases the shear modulus, but knob formation increases it. We show that dynamical changes in KAHRP binding affinities can explain the experimentally observed relocalization of KAHRP from ankyrin to actin complexes and demonstrate good qualitative agreement with experiments by measuring pair cross-correlations both in the computer simulations and in super-resolution imaging experiments.Author summaryMalaria is one of the deadliest infectious diseases and its symptoms are related to the blood stage, when the parasite multiplies within red blood cells. In order to avoid clearance by the spleen, the parasite produces specific factors like the adhesion receptor PfEMP1 and the multifunctional protein KAHRP that lead to the formation of adhesive knobs on the surface of the red blood cells and thus increase residence time in the vasculature. We have developed a computational model for the parasite-induced remodelling of the actin-spectrin network to quantitatively predict the dynamical changes in the mechanical properties of the infected red blood cells and the spatial distribution of the different protein components of the membrane skeleton. Our simulations show that KAHRP can relocate to actin junctions due to dynamical changes in binding affinities, in good qualitative agreement with super-resolution imaging experiments. In the future, our simulation framework can be used to gain further mechanistic insight into the way malaria parasites attack the red blood cell cytoskeleton.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ivano Basile

Abstract We investigate interactions between branes of various dimensions, both charged and uncharged, in three non-supersymmetric string models. These include the USp(32) and U(32) orientifold projections of the type IIB and type 0B strings, as well as the SO(16)×SO(16) projection of the exceptional heterotic string. The resulting ten-dimensional spectra are free of tachyons, and the combinations of branes that they contain give rise to rich and varied dynamics. We compute static potentials for parallel stacks of branes in three complementary regimes: the probe regime, in which one of the two stacks is parametrically heavier than the other, the string-amplitude regime, in which both stacks are light, and the holographic regime. Whenever comparisons are possible, we find qualitative agreement despite the absence of supersymmetry. For charged branes, our analysis reveals that the Weak Gravity Conjecture is satisfied in a novel way via a renormalization of the effective charge-to-tension ratio.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 536
Author(s):  
Maximilien Barbier ◽  
Arseni Goussev

In its standard formulation, quantum backflow is a classically impossible phenomenon in which a free quantum particle in a positive-momentum state exhibits a negative probability current. Recently, Miller et al. [Quantum 5, 379 (2021)] have put forward a new, "experiment-friendly" formulation of quantum backflow that aims at extending the notion of quantum backflow to situations in which the particle's state may have both positive and negative momenta. Here, we investigate how the experiment-friendly formulation of quantum backflow compares to the standard one when applied to a free particle in a positive-momentum state. We show that the two formulations are not always compatible. We further identify a parametric regime in which the two formulations appear to be in qualitative agreement with one another.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Michele Ciavarella ◽  
Antonio Papangelo

AbstractMotivated by roughness-induced adhesion enhancement (toughening and strengthening) in low modulus materials, we study the detachment of a sphere from a substrate in the presence of both viscoelastic dissipation at the contact edge, and roughness in the form of a single axisymmetric waviness. We show that the roughness-induced enhancement found by Guduru and coworkers for the elastic case (i.e. at very small detachment speeds) tends to disappear with increasing speeds, where the viscoelastic effect dominates and the problem approaches that of a smooth sphere. This is in qualitative agreement with the original experiments of Guduru’s group with gelatin. The cross-over velocity is where the two separate effects are comparable. Viscoelasticity effectively damps roughness-induced elastic instabilities and makes their effects much less important. Graphical Abstract


Author(s):  
Aceng Sambas ◽  
Sundarapandian Vaidyanathan ◽  
Irene M. Moroz ◽  
Babatunde Idowu ◽  
Mohamad Afendee Mohamed ◽  
...  

<span>This paper announces a new three-dimensional chaotic jerk system with two saddle-focus equilibrium points and gives a dynamic analysis of the properties of the jerk system such as Lyapunov exponents, phase portraits, Kaplan-Yorke dimension and equilibrium points. By modifying the Genesio-Tesi jerk dynamics (1992), a new jerk system is derived in this research study. The new jerk model is equipped with multistability and dissipative chaos with two saddle-foci equilibrium points. By invoking backstepping technique, new results for synchronizing chaos between the proposed jerk models are successfully yielded. MultiSim software is used to implement a circuit model for the new jerk dynamics. A good qualitative agreement has been shown between the MATLAB simulations of the theoretical chaotic jerk model and the MultiSIM results</span>


Author(s):  
Vijayalakshmi Nandakumar ◽  
Tracie Profaizer ◽  
Bucky K. Lozier ◽  
Marc G. Elgort ◽  
Erin T. Larragoite ◽  
...  

ABSTRACT Context: Emerging evidence shows correlation between the presence of neutralization antibodies (nAbs) and protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently available commercial serology assays lack the ability to specifically identify nAbs. An ELISAbased nAb assay (GenScript cPass neutralization antibody assay) has recently received emergency use authorization from the Food and Drug Administration (FDA). Objective: To evaluate the performance characteristics of this assay and compare and correlate it with the commercial assays that detect SARS-CoV-2 specific IgG. Design: Specimens from SARS-COV-2 infected patients (n=124), healthy donors obtained pre-pandemic (n=100), and from patients with non-COVID (coronavirus disease 2019) respiratory infections (n=92) were analyzed using this assay. Samples with residual volume were also tested on three commercial serology platforms (Abbott, EUROIMMUN, Siemens). Twenty-eight randomly selected specimens from patients with COVID-19 and 10 healthy controls were subjected to a Plaque Reduction Neutralization Test (PRNT). Results: The cPass assay exhibited 96.1% (95% CI, 94.9%–97.3%) sensitivity (at &gt;14 days post- positive PCR), 100% (95% CI, 98.0%–100.0%) specificity and zero cross-reactivity for the presence of non- COVID respiratory infections. When compared to the plaque reduction assay, 97.4% (95% CI, 96.2%–98.5%) qualitative agreement and a positive correlation (R2 =0.76) was observed. Comparison of IgG signals from each of the commercial assays with the nAb results from PRNT/cPass assays displayed &gt;94.7% qualitative agreement and correlations with R2=0.43/0.68 (Abbott), R2=0.57/0.85 (EUROIMMUN) and R2=0.39/0.63 (Siemens), respectively. Conclusions: The combined data support the use of cPass assay for accurate detection of the nAb response. Positive IgG results from commercial assays associated reasonably with nAbs presence and can serve as a substitute.


2021 ◽  
Author(s):  
Lotte Weerts ◽  
Claudia Clopath ◽  
Dan F. M. Goodman

Automatic speech recognition (ASR) software has been suggested as a candidate model of the human auditory system thanks to dramatic improvements in performance in recent years. To test this hypothesis, we compared several state-of-the-art ASR systems to results from humans on a barrage of standard psychoacoustic experiments. While some systems showed qualitative agreement with humans in some tests, in others all tested systems diverged markedly from humans. In particular, none of the models used spectral invariance, temporal fine structure or speech periodicity in a similar way to humans. We conclude that none of the tested ASR systems are yet ready to act as a strong proxy for human speech recognition. However, we note that the more recent systems with better performance also tend to better match human results, suggesting that continued cross-fertilisation of ideas between human and automatic speech recognition may be fruitful. Our software is released as an open-source toolbox to allow researchers to assess future ASR systems or add additional psychoacoustic measures.


Sign in / Sign up

Export Citation Format

Share Document