A Revised Serverless Authentication Protocol with Forward Security for RFID

2010 ◽  
Vol 29-32 ◽  
pp. 2267-2272
Author(s):  
Lei He ◽  
Yong Gan ◽  
Na Na Li ◽  
Tao Zhang

Information security problem has become one of the hottest issues in RFID system. More and more researchers begin to study how to provide security protection in the RFID system. In the paper, we mainly research lightweight authentication protocols in RFID system. Firstly, we analyze some protocols. Secondly, we introduce a serverless authentication protocol for RFID system and analyze its security. We find it does not provide forward security. Thirdly, we propose a revised serverless authentication protocol with forward security. It provides two-way authentication and privacy protection, resists tracking and cloning attack as well as the original protocol. Moreover, it provides forward security protection and resists desynchronization attack. For the efficiency, its computational complexity is at the same level with the protocol proposed by Tan et al.

2010 ◽  
Vol 29-32 ◽  
pp. 2709-2713
Author(s):  
Xin Mei Lu ◽  
Lei He

It is necessary for researchers to design lightweight authentication protocols to protect information security between tag and reader in RFID system. It is a great challenge to design an efficient and secure protocol because the tag has limited computation resource. In the paper, we firstly analyze some protocols. Secondly, we introduce a serverless authentication protocol for RFID system and analyze its security. We find it does not provide two-way authentication. Thirdly, we propose a modified two-way authentication protocol without server for RFID. The result indicates it provides privacy protection, resists tracking, and resists cloning attack. Moreover, it provides two-way authentication. For the efficiency, we think the computational complexity of our protocol is at the same level with the original protocol.


2010 ◽  
Vol 29-32 ◽  
pp. 2262-2266
Author(s):  
Yong Gan ◽  
Lei He ◽  
Tao Zhang ◽  
Na Na Li

RFID has become an important infrastructure technology. However, it does not solve information security problem. An adversary can eavesdrop on the messages exchanged between tag and backend database and track tag’s holder. Many scholars have proposed some lightweight protocols in order to protect user’s privacy and avoid various attacks. In this paper, we analyze some authentication protocols. Especially, we analyze a forward secure RFID privacy protection scheme proposed by Ohkubo et al. Afterwards, we propose an improved protection scheme with two-way authentication. It is lightweight and suitable for low-cost RFID system. Moreover, it not only provides indistinguishability and forward security but also provides two-way authentication.


2021 ◽  
Author(s):  
Muhammad Arslan Akram ◽  
Adnan Noor Mian

Abstract Due to the stringent computational capabilities of low-cost RFID tags, several lightweight secure authentication protocols have been proposed for an RFID-based supply chain using bitwise operations. In this paper, we study the vulnerabilities associated with bitwise operations by doing cryptanalysis of a secure lightweight authentication protocol for RFID tags. The bitwise operations like rotation and XOR show that the protocol is vulnerable to tag, reader, and supply chain node impersonation attacks. We find that the major cause of the vulnerability is bitwise operations and suggest using the physically unclonable functions rather than bitwise operations to secure such lightweight protocols.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1166
Author(s):  
Rania Baashirah ◽  
Abdelshakour Abuzneid

Internet of Things (IoT) is a new paradigm that has been evolving into the wireless sensor networks to expand the scope of networked devices (or things). This evolution drives communication engineers to design secure and reliable communication at a low cost for many network applications such as radio frequency identification (RFID). In the RFID system, servers, readers, and tags communicate wirelessly. Therefore, mutual authentication is necessary to ensure secure communication. Normally, a central server supports the authentication of readers and tags by distributing and managing the credentials. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID networks. Using a serverless RFID system is an alternative solution to using a central server. In this model, both the reader and the tag perform mutual authentication without the need for the central server. However, many security challenges arise from implementing lightweight authentication protocols in serverless RFID systems. We propose a new secure serverless RFID authentication protocol based on the famous elliptic curve cryptography (ECC). The protocol also maintains the confidentiality and privacy of the messages, tag information, and location. Although most of the current serverless protocols assume secure channels in the setup phase, we assume an insecure environment during the setup phase between the servers, readers, and tags. We ensure that the credentials can be renewed by any checkpoint server in the mobile RFID network. Thus, we implement ECC in the setup phase (renewal phase), to transmit and store the communication credentials of the server to multiple readers so that the tags can perform the mutual authentication successfully while far from the server. The proposed protocol is compared with other serverless frameworks proposed in the literature in terms of computation cost and attacks resistance.


Author(s):  
Pierre-Francois Bonnefoi ◽  
Pierre Dusart ◽  
Damien Sauveron ◽  
Raja Naeem Akram ◽  
Konstantinos Markantonakis

Sign in / Sign up

Export Citation Format

Share Document