Three Dimensional Dynamic Analysis of Crack Growth in Unreinforced Baked Brick Shear Wall

2014 ◽  
Vol 602-605 ◽  
pp. 674-679
Author(s):  
Hao Chen ◽  
Li Li Xie

This paper presents the 3D dynamic crack growth simulation of unreinforced baked brick shear wall by using particle discretization scheme finite element method (PDS-FEM), which is efficient and capable of computing bifurcation/branching in cracking. The technology of fast modelling of bricks and cements by applying VB script in AUTOCAD is illustrated briefly. The shear wall including mortar joints is modelled in detail. The model parameters are calibrated by using standard static tests. Since the computation cost is high in structural level fracture analysis, parallel computation technology is employed. Finally, with two-phase failure criterion of mortar under multi-dimension stress state, the performance of low and high loading speed is compared. The numerical results verify the availability of dynamic fracture analysis of masonry structure by using PDS-FEM.

2009 ◽  
Vol 80 (12) ◽  
pp. 1520-1543 ◽  
Author(s):  
Qinglin Duan ◽  
Jeong-Hoon Song ◽  
Thomas Menouillard ◽  
Ted Belytschko

2021 ◽  
Author(s):  
Andrea Manzoni ◽  
Aronne Dell'Oca ◽  
Martina Siena ◽  
Alberto Guadagnini

<p>We consider transient three-dimensional (3D) two-phase (oil and water) flows, taking place at the core-scale. In this context, we aim at exploiting the full information content associated with available information of (i) the 3D distribution of oil saturation and (ii) the overall pressure difference across the rock sample, to estimate the set of model parameters. We consider a continuum-scale description of the system behavior upon relying on the widely employed Brooks-Corey model for the characterization of relative permeabilities and on the capillary pressure correlation introduced by Skjaeveland et al. (2000). To provide a transparent way of assessing the results of the inversion, we rely on a synthetic reference scenario. The latter is intended to mimic having at our disposal 3D and section-averaged distributions of (time-dependent) oil saturations of the kind that can be acquired during typical laboratory experiments. These are in turn corrupted by way of a random noise, to address the influence of experimental uncertainties. We focus on diverse scenarios encompassing imbibition and drainage conditions. We employ two population-based optimization algorithms, i.e., (i) the particle swarm optimization (PSO); and (ii) the differential evolution (DE), which enable one to effectively tackle the high-dimensionality parameters space (i.e., 12 dimensions in our setting) we consider. Model calibration results are of satisfactory quality for the majority of the tested scenarios, whereas the DE algorithm is associated with highest effectiveness.</p><p><strong>References</strong></p><p>S.M. Skjaeveland; L.M. Siqveland; A. Kjosavik; W.L. Hammervold Thomas; G.A. Virnovsky (2000). Capillary Pressure Correlation for Mixed-Wet Reservoirs SPE Res Eval & Eng 3 (01): 60–67. https://doi.org/10.2118/60900-PA</p>


2019 ◽  
Vol 11 (4) ◽  
pp. 547-555
Author(s):  
Shuji Tomaru ◽  
Akiyuki Takahashi

Purpose Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose of this paper is to present a three-dimensional fatigue crack growth simulation of embedded cracks using s-version finite element method (SFEM). Using the numerical results, the validity of the fitness-for-service (FFS) code evaluation method is verified. Design/methodology/approach In this paper, three-dimensional fatigue crack propagation analysis of embedded cracks is performed using the SFEM. SFEM is a numerical analysis method in which the shape of the structure is represented by a global mesh, and cracks are modeled by local meshes independently. The independent global and local meshes are superimposed to obtain the displacement solution of the problem simultaneously. Findings The fatigue crack growth of arbitrary shape of cracks is slow compared to that of the simplified circular crack and the crack approximated based on the FFS code of the Japan Society of Mechanical Engineers (JSME). The results tell us that the FFS code of JSME can provide a conservative evaluation of the fatigue crack growth and the residual life time. Originality/value This paper presents a three-dimensional fatigue crack growth simulation of embedded cracks using SFEM. Using this method, it is possible to apply mixed mode loads to complex shaped cracks that are closer to realistic conditions.


2017 ◽  
Vol 822 ◽  
pp. 31-53 ◽  
Author(s):  
Rudolf Flittner ◽  
Michal Přibyl

A mathematical model of rhythmic motion of a charged droplet between two parallel electrodes is developed in this study. The work is motivated by recent experimental findings that report oscillatory behaviour of water in oil droplets under a direct current electric field. The model considers the presence of a charged droplet placed in a dielectric medium. The droplet is immediately attracted to the electrode with the opposite polarity. When approaching the electrode, the electric charge is electrochemically reversed within the droplet, which is then repelled to the other electrode. The entire process can periodically repeat. The model is able to track a deformable liquid–liquid interface, the dynamics of the wetting process at the electrodes and the dynamics of electrochemical charge transfer between the droplet and the electrodes. The dependences of the oscillation frequency, charge acquired by the droplet and charging time on several model parameters (surface charge density on electrodes, kinetic parameter of charging, droplet–electrode contact angle, droplet size, liquid permittivity) are examined. Qualitative agreement of the model predictions with available experimental data is obtained, e.g. the oscillation frequency increases with growing electric field strength or droplet size. Our model represents the first successful attempt to predict oscillatory motion of aqueous droplets by a pseudo-three-dimensional two-phase approach. Our model also strongly supports the theory that the oscillatory motion relies on the combination of electrochemical charge injection at the electrodes and electrostatic attraction/repulsion processes.


Author(s):  
M. H. Aliabadi ◽  
S. Niku ◽  
R. Adey

In this paper an application of the dual boundary element method to the analysis of two- and three-dimensional mixed-mode crack growth is presented using a boundary element software BEASY. The crack growth processes are simulated numerically using the maximum principal stress criterion and the minimum strain energy density criterion. The fatigue life predictions are evaluated using the generalized formula presented in FLAGRO. Result of the analysis are presented for two- and three-dimensional crack problems.


Sign in / Sign up

Export Citation Format

Share Document