droplet size
Recently Published Documents


TOTAL DOCUMENTS

2396
(FIVE YEARS 563)

H-INDEX

69
(FIVE YEARS 10)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 174
Author(s):  
Maria-Cristina Anicescu ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Marina-Theodora Talianu ◽  
Mihaela Violeta Ghica ◽  
Valentina Anuța ◽  
...  

The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box–Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability—with a reduced mechanical work—and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 175
Author(s):  
Yong He ◽  
Jianjian Wu ◽  
Haoluan Fu ◽  
Zeyu Sun ◽  
Hui Fang ◽  
...  

Spray droplet size is the main factor affecting the deposition uniformity on a target crop. Studying the influence of multiple factors on the droplet size distribution as well as the evaluation method is of great significance for improving the utilization of pesticides. In this paper, volume median diameter (VMD) and relative span (RS) were selected to evaluate the droplet size distribution under different hollow cone nozzles, flow rates and spatial positions, and the quantitative models of VMD and RS were established based on machine learning methods. The results showed that support vector regression (SVR) had excellent results for VMD (Rc = 0.9974, Rp = 0.9929), while multi-layer perceptron (MLP) had the best effect for RS (Rc = 0.9504, Rp = 0.9537). The correlation coefficient of the prediction set is higher than 0.95, showing the excellent ability of machine learning on predicting the droplet size distribution. In addition, the visualization images of the droplet size distribution were obtained based on the optimal models, which provided intuitive guidance for realizing the uniform distribution of pesticide deposition. In conclusion, this study provides a novel and feasible method for quantitative evaluation of droplet size distribution and offers a theoretical basis for further determining appropriate operation parameters according to the optimal droplet size.


Author(s):  
Xiaoda Wang ◽  
Yuanyuan Liu ◽  
Dayu Liu ◽  
Xuehui Ge ◽  
Ling Li ◽  
...  

Droplet breakup in micro-constrictions is an important phenomenon in industrial applications. This work aimed to investigate the droplet breakup in the square microchannel with a short square constriction to generate the slug flow, which drew little attention before. Mechanism analysis indicated that this breakup process included the shear-force-dominated, squeezing-force-dominated, and pinch-off stages. Non-uniform daughter droplets were generated in the constriction with their interface restricted in the horizontal and perpendicular directions by the microchannel walls. The average relative deviation of the daughter droplet size was < 30%, much lower than that for the breakup with the daughter droplet restricted only in one direction. An empirical equation with a deviation of < 20% was provided to show the dependence of the daughter droplet size on the operation conditions. The comparison results suggested that the different restriction effects of microchannel wall on daughter droplets led to the different breakup mechanisms in different constrictions.


2022 ◽  
Vol 15 (1) ◽  
pp. 70
Author(s):  
Manohar Mahadev ◽  
Hittanahalli S. Nandini ◽  
Ramith Ramu ◽  
Devegowda V. Gowda ◽  
Zainab M. Almarhoon ◽  
...  

The current study was intended to fabricate and evaluate ultrasonically assisted quercetin nanoemulsion (Que-NE) for improved bioavailability and therapeutic effectiveness against diabetes mellitus in rats. Ethyl oleate, Tween 20, and Labrasol were chosen as oil, surfactant, and cosurfactant, respectively. Box–Behnken design (BBD) was employed to study the influence of process variables such as % surfactant and cosurfactant mixture (Smix) (5 to 7%), % amplitude (20–30%) and sonication time (2.5–7.5 min) on droplet size, polydispersibility index (PDI), and % entrapment efficiency (%EE) were studied. The optimization predicted that 9% Smix at 25% amplitude for 2.5 min would produce Que-NE with a droplet size of 125.51 nm, 0.215 PDI, and 87.04% EE. Moreover, the optimized Que-NE exhibited appreciable droplet size and PDI when stored at 5, 30, and 40 °C for 45 days. Also, the morphological characterization by transmission electron microscope (TEM) indicated the spherical shape of the optimized nanoemulsion. Furthermore, the Que-NE compared to pure quercetin exhibited superior release and enhanced oral bioavailability. The streptozocin-induced antidiabetic study in rats revealed that the Que-NE had remarkable protective and therapeutic properties in managing body weight, blood glucose level, lipid profile, and tissue injury markers, alongside the structure of pancreatic β-cells and hepatocytes being protected. Thus, the developed Que-NE could be of potential use as a substitute strategy for diabetes.


2022 ◽  
pp. 107334
Author(s):  
Yan Wang ◽  
Jinhui Yang ◽  
Guobiao Cai ◽  
Zhaohui Wang ◽  
Jie Fang ◽  
...  
Keyword(s):  

age ◽  
2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Estefania G. Polli ◽  
Guilherme S. Alves ◽  
Jesaelen Gizotti de Moraes ◽  
Greg Robert Kruger

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 86
Author(s):  
Sara Vidovič ◽  
Alan Bizjak ◽  
Anže Sitar ◽  
Matej Horvat ◽  
Biljana Janković ◽  
...  

The purpose of this study was to investigate the droplet size obtained with a three-channel spray nozzle typically used in fluid bed devices and to construct a semi-empirical model for prediction of droplet size. With the aid of a custom-made optical method concept, the impact of the type of polymer and solvents used through dispersion properties (viscosity, density, and surface tension), dispersion flow rate, atomization pressure, and microclimate pressure on droplet size was investigated. A semi-empirical model with adequate predictability for calculating the average droplet size (R2 = 0.90, Q2 = 0.73) and its distribution (R2 = 0.84, Q2 = 0.61) was constructed by employing dimensional analysis and design of experiments. Newtonian and non-Newtonian dispersion and process parameters on laboratory and on production scale were included, thereby enabling constant droplet size irrespective of the scale. Based on the model results, it would be possible to scale-up the atomization process (e.g., coating process) from laboratory to production scale in a systematic fashion, regardless of the type of solvent or polymer used. For the system investigated, this can be performed by understanding the dispersion properties, such as viscosity, density, and surface tension, as well as the following process parameters: dispersion flow rate, atomization, and microclimate pressure.


2022 ◽  
Vol 92 (3) ◽  
pp. 386
Author(s):  
Н.А. Богатов ◽  
В.С. Сысоев ◽  
Д.И. Сухаревский ◽  
М.Ю. Наумова

The microwave diagnostics of discharges occurring in an artificial cloud of charged water droplets created in an open air simulating the environment of thunderclouds is implemented. An artificial cloud with a droplet size of about 1 microns is opaque in the visible range, so intra-cloud discharges are not available for investigation by traditional methods in the spark discharge physics based on the registration of visible discharge radiation. Microwaves pass through such a cloud without noticeable attenuation, they interact only with the plasma of discharges occurring in the cloud. The probing microwave radiation had a wavelength of 8 mm. The attenuation of microwaves passed through the cloud was measured with temporary resolution of about 10 ns. The temporal characteristics of intra-cloud discharges were investigated.


Sign in / Sign up

Export Citation Format

Share Document