opposite polarity
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 93)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Rotem Ruach ◽  
Nir Ratner ◽  
Scott W. Emmons ◽  
Alon Zaslaver

Neurons are characterized by elaborate tree-like dendritic structures that support local computations by integrating multiple inputs from upstream presynaptic neurons. It is less clear if simple neurons, consisting of a few or even a single neurite, may perform local computations as well. To address this question, we focused on the compact neural network of C. elegans animals for which the full wiring diagram is available, including the coordinates of individual synapses. We find that the positions of the chemical synapses along the neurites are not randomly distributed, nor can they be explained by anatomical constraints. Instead, synapses tend to form clusters, an organization that supports local compartmentalized computations. In mutually-synapsing neurons, connections of opposite polarity cluster separately, suggesting that positive and negative feedback dynamics may be implemented in discrete compartmentalized regions along neurites. In triple-neuron circuits, the non-random synaptic organization may facilitate local functional roles, such as signal integration and coordinated activation of functionally-related downstream neurons. These clustered synaptic topologies emerge as a guiding principle in the network presumably to facilitate distinct parallel functions along a single neurite, effectively increasing the computational capacity of the neural network.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan-Jun Gu ◽  
Masakatsu Murakami

AbstractSpontaneous magnetic field generation plays important role in laser-plasma interactions. Strong quasi-static magnetic fields affect the thermal conductivity and the plasma dynamics, particularly in the case of ultra intense laser where the magnetic part of Lorentz force becomes as significant as the electric part. Kinetic simulations of giga-gauss magnetic field amplification via a laser irradiated microtube structure reveal the dynamics of charged particle implosions and the mechanism of magnetic field growth. A giga-gauss magnetic field is generated and amplified with the opposite polarity to the seed magnetic field. The spot size of the field is comparable to the laser wavelength, and the lifetime is hundreds of femtoseconds. An analytical model is presented to explain the underlying physics. This study should aid in designing future experiments.


2021 ◽  
pp. 108934
Author(s):  
Chloe M. Erikson ◽  
Kevin T. Douglas ◽  
Talia O. Thuet ◽  
Ben D. Richardson ◽  
Claudia Mohr ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Jack McCann ◽  
Brittany Benlian ◽  
Isaac Knudson ◽  
Evan Miller

Fluorescence microscopy with fluorescent reporters that respond to environmental cues are a powerful method for interrogating biochemistry and biophysics in living systems. Photoinduced electron transfer (PeT) is commonly used as a trigger to modulate fluorescence in response to changes in the biological environment. PeT based indicators rely either on PeT into the excited state (acceptor PeT) or out of the excited state (donor PeT). Our group has been developing voltage-sensitive fluorophores (VF dyes) that respond to changes in biological membrane potential. We hypothesize that the mechanism of voltage sensitivity arises from acceptor PeT (a-PeT) from an electron-rich aniline-containing molecular wire into the excited state fluorophore, resulting in decreased fluorescence at negative membrane potentials. Here, we can reverse the direction of electron flow to access donor-excited PeT (d-PeT) VF dyes by introducing electron-withdrawing (EWG), rather than electron-rich molecular wires. Similar to first-generation aniline containing VF dyes, EWG-containing VF dyes show voltage-sensitive fluorescence, but with the opposite polarity: hyperpolarizing membrane potentials now give fluorescence increases. We use a combination of computation and experiment to estimate a ΔE of ~0.6 eV for voltage sensitivity in d-PeT indicators, show that two of the new reverse VF dyes are voltage sensitive, and provide the first example, to our knowledge, of a molecular sensor that can be tuned across energy regimes to access bi-directional electron flow for fluorescence sensing in living systems.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6995
Author(s):  
Bing Luo ◽  
Jian Wang ◽  
Dong Dai ◽  
Lei Jia ◽  
Licheng Li ◽  
...  

A converter transformer is important primary equipment in a DC transmission project. The voltage on the valve side winding is complex when the equipment is running, including DC, AC, and AC–DC combined voltage. The insulation structure of the valve side winding of a converter transformer is an oil-paper insulation structure, which may have a variety of defects in the manufacturing stage and daily use, resulting in partial discharge. Therefore, it is the key to studying the partial discharge characteristics and mechanism of oil-paper insulation under AC–DC combined voltage. In this paper, we build a two-dimensional air gap model of oil-paper-insulated pressboard considering the actual particles and actual reaction based on the fluid model. The characteristics and evolution mechanism of partial discharge (PD) in pressboard under different AC/DC combined voltages are studied by numerical simulation. The results show that when the DC component increases, the polarity effect of partial discharge is more obvious, while the potential and discharge intensity in the air gap decrease. Further analysis revealed that the DC component in the combined voltage accumulated a large number of surface charges on the surface of the air gap, and the space charge distribution was more uniform and dispersed, which generated an electric field with opposite polarity to the DC component in the air gap and, then, inhibited the development of local discharge in the paperboard. The results of the simulation are consistent with the previous experimental phenomena, and the mechanism analysis of the simulation results also verifies the previous analysis on the mechanism of experimental phenomena. This will lay a theoretical foundation for the further study of partial discharge phenomenon of oil-paper insulation structures in practical operation in the future.


2021 ◽  
Author(s):  
Yan-Jun Gu ◽  
Masakatsu Murakami

Abstract Spontaneous magnetic field generation plays important role in laser-plasma interactions. Strong quasi-static magnetic fields affect the thermal conductivity and the plasma dynamics, particularly in the case of ultra intense laser where the magnetic part of Lorentz force becomes as significant as the electric part. Kinetic simulations of giga-gauss magnetic field amplification via a laser irradiated microtube structure reveal the dynamics of charged particle implosions and the mechanism of magnetic field growth. A giga-gauss magnetic field is generated and amplified with the opposite polarity to the seed magnetic field. The spot size of the field is comparable to the laser wavelength, and the lifetime is hundreds of femtoseconds. An analytical model is presented to explain the underlying physics. This study should aid in designing future experiments.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1101
Author(s):  
Vernon Cooray ◽  
Gerald Cooray ◽  
Marcos Rubinstein ◽  
Farhad Rachidi

Experimental data show that in laboratory sparks, X-rays are produced in time synchronization with the meeting of streamers of opposite polarity just before the final breakdown of the discharge gap. It has been suggested that the electric field enhancement created during the collision of streamers could provide the necessary conditions for electron acceleration, even though some of the theoretical studies show that the duration of the electric field is not long enough to do so. The experimental data on laboratory discharges show that. when streamers of opposite polarity meet each other, a potential or ionization wave that renders the streamer channels conducting is initiated. This paper shows that these ionization waves that convert the discharge channels from weakly conducting to highly conducting are associated with electric fields large enough to accelerate electrons to relativistic energies.


Author(s):  
William J. B. Oldham Jr.

Self-organization in small systems of particles with simple dynamic laws has been simulated. The purpose of this work was to investigate self-organization in small systems of charged particles under the influence of an electric field where we could follow individual particles. There are positively and negatively charged particles. The intention is to look for pattern formation as the system evolves. Three electric fields and the particle-to-particle interactions were utilized to provide the forces. The three electric fields were a constant field, a ramp field, and an oscillatory field. The final system states for various electric fields are presented. For the two kinds of particles simulated, like particles have a repulsive force, while unlike particles have an attractive force. Initially, the particles are randomly distributed in a two dimensional square bounded region, and then allowed to dynamically interact for a number of iterations. Using the inverse square law force, modified at short distances, most cases resulted in equilibrium with the particles of opposite polarity paired up. Since this was a state of equilibrium no more movement occurred. The results of the experiments are presented in graphical format. The main conclusions are that this model can be used to study small dynamic systems, and that the presence of an external electric field does not significantly modify the final configuration but hastens the development of the equilibrium state.


Sign in / Sign up

Export Citation Format

Share Document