Time Marching Simulation of Aeroelasticity Based on a Coupled Numerical Method

2014 ◽  
Vol 610 ◽  
pp. 60-64
Author(s):  
Rui Xi ◽  
Zhan Ling Ji ◽  
Hong Guang Jia ◽  
Qian Jin Xiao

A numerical method integrating computational fluid dynamics and computational structural dynamics for predicating wing flutter in time domain is described. A strong coupling employing the dual-time method is adopted. The Newmark algorithm is used to solve flutter equation in modal spaces while the finite-volume algorithm for the Navier-Stokes equations is used to solve the flow. The computed flutter boundaries of AGARD wing 445.6 for frees-tream Mach numbers ranging from 0.499 to 1.141 agree well with the experiment than using the DLM.

Author(s):  
Jiho You ◽  
Jinmo Lee ◽  
Donghyun You

A computational simulation methodology, which combines a computational fluid dynamics technique and a computational structural dynamics technique, is employed to design a deformable foil of which kinematics is inspired by the propulsive motion of a fin or a tail of fish and cetacean. The unsteady incompressible Navier-Stokes equations are solved using a second-order accurate finite-difference method and an immersed-boundary method to effectively impose boundary conditions on complex moving boundaries. A finite-element-based structural dynamics solver is employed to compute the deformation of the foil due to interaction with fluid. A phase angle between pitching and heaving motions as well as the flexibility of the foil, which is represented by the Youngs modulus are varied to find out how these factors affect the propulsion efficiency.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


2020 ◽  
Vol 67 ◽  
pp. 100-119 ◽  
Author(s):  
Laurent Boudin ◽  
Céline Grandmont ◽  
Bérénice Grec ◽  
Sébastien Martin ◽  
Amina Mecherbet ◽  
...  

In this paper, we propose a coupled fluid-kinetic model taking into account the radius growth of aerosol particles due to humidity in the respiratory system. We aim to numerically investigate the impact of hygroscopic effects on the particle behaviour. The air flow is described by the incompressible Navier-Stokes equations, and the aerosol by a Vlasov-type equation involving the air humidity and temperature, both quantities satisfying a convection-diffusion equation with a source term. Conservations properties are checked and an explicit time-marching scheme is proposed. Twodimensional numerical simulations in a branched structure show the influence of the particle size variations on the aerosol dynamics.


1993 ◽  
Vol 115 (1) ◽  
pp. 110-117 ◽  
Author(s):  
M. Giles ◽  
R. Haimes

This paper describes and validates a numerical method for the calculation of unsteady inviscid and viscous flows. A companion paper compares experimental measurements of unsteady heat transfer on a transonic rotor with the corresponding computational results. The mathematical model is the Reynolds-averaged unsteady Navier–Stokes equations for a compressible ideal gas. Quasi-three-dimensionality is included through the use of a variable streamtube thickness. The numerical algorithm is unusual in two respects: (a) For reasons of efficiency and flexibility, it uses a hybrid Navier–Stokes/Euler method, and (b) to allow for the computation of stator/rotor combinations with arbitrary pitch ratio, a novel space–time coordinate transformation is used. Several test cases are presented to validate the performance of the computer program, UNSFLO. These include: (a) unsteady, inviscid flat plate cascade flows (b) steady and unsteady, viscous flat plate cascade flows, (c) steady turbine heat transfer and loss prediction. In the first two sets of cases comparisons are made with theory, and in the third the comparison is with experimental data.


Author(s):  
Vaclav Slama ◽  
Bartolomej Rudas ◽  
Ales Macalka ◽  
Jiri Ira ◽  
Antonin Zivny

Abstract An advanced in-house procedure, which is based on a commercial numerical code, to predict a potential danger of unstalled flutter has been developed and validated. This procedure using a one way decoupled method and a full-scale time-marching 3D viscous model in order to obtain the solution of the Unsteady Reynolds-Averaged Navier-Stokes equations in the time domain thus calculate an aerodynamic work and a damping ratio is used as an essential tool for developing ultra-long last stage rotor blades in low pressure turbine parts for modern steam turbines with a large operating range and an enhanced efficiency. An example is shown on a development of the last stage blade for high backpressures.


Sign in / Sign up

Export Citation Format

Share Document