Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
Latest Publications


TOTAL DOCUMENTS

148
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878682

Author(s):  
Andrea Arnone ◽  
Ennio Carnevale ◽  
Michele Marconcini

The NASA Rotor 37 has been computed by several authors in the last few years with relative success. The aim of this work is to present a systematic grid dependency study in order to quantify the amount of uncertainty that comes from the grid density. The computational domain is divided onto several regions (i.e. leading edge, trailing edge, shear layer …) and for each of them, the impact of the grid density is investigated. By means of this analysis, substantial improvement has been obtained in the prediction of efficiency and exit angle. On the contrary, the improvement achieved in total pressure and total temperature ratio is less remarkable. It is believed that only after a systematic grid dependency study can the contribution of turbulence modeling, laminar-turbulent transition, and boundary conditions be analyzed with success.


Author(s):  
Mathias Deckers ◽  
John D. Denton

A theoretical and computational study into the aerodynamics of trailing-edge-cooled transonic turbine blades is described in this part of the paper. The theoretical study shows that, for unstaggered blades with coolant ejection, the base pressure and overall loss can be determined exactly by a simple control volume analysis. This theory suggests that a thick, cooled trailing edge with a wide slot can be more efficient than a thin, solid trailing edge. An existing time-marching finite volume method is adapted to calculate the transonic flow with trailing edge coolant ejection on a structured, quasi-orthogonal mesh. Good overall agreement between the present method, inviscid and viscous, and experimental evidence is obtained.


Author(s):  
C-W. Hustad ◽  
A. Bölcs ◽  
M. Wehner

Calculated results for tip flow around two different blade configurations are presented and compared with experimental data. The first configuration (case number 1) is a flat-plate profile tested in a linear transonic tunnel — the profile is an idealized representation of the aft-section of some highly curved turbine blades. The second configuration (case number 2) originates from the outer profile on the last-stage-blade of a steam turbine, however it is also reminiscient of a section from a turbine blade with supersonic exit flow. This configuration was tested in an annular cascade at Mach numbers representative of engine operating conditions. The computed results were obtained using a parallel 3D unstructured Navier-Stokes code. The code runs on a work-station cluster, as well as being optimized for the 256 processor Cray T3D at EPFL: the code is capable of gigaflop performance using more than 3 million cells — adaptive mesh refinement thus allows enhanced resolution within the tip gap region. For each configuration we have calculated two Runs. In both cases, Run-1 is similar to the experimental conditions, so that direct comparison between measured and calculated results is possible. With case number 1/Run-2 we re-calculated the flow without imposing a prescribed inflow boundary-layer along the sidewall. Comparison between the two runs helped reveal how free-stream total pressure can establish itself within the tip gap region. For the second configuration — in the annular cascade — we were interested in observing the influence of relative movement between the blade tip and adjacent sidewall. Hence for case number 2/Run-2 we imposed a circumferential velocity on the adjacent sidewall. This modified the effective sidewall boundary-layer and had a noticeable influence on the development of the tip-leakage flow.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


Author(s):  
Ren-Jing Cao ◽  
Sheng Zhou

Rotating stall phenomenon is usually characterized by 3D aerodynamic stability behavior. The earlier models mainly considered the flow effects in terms of 1D and 2D spatial variables. In order to involve the characteristics of the 3D flow of the compressor, it is necessary to improve the existing rotating stall stability models and further develop the models to consider the effects of the 3D disturbance. In this paper, a new aerodynamic stability model concerning the effects of a radial disturbance produced by the compressor, and explaining more mechanisms about the aerodynamic stability of compressor is presented. Using the developed rotating stall stability model, the stall margins are calculated and compared to experimental data for two axial flow compressors. The calculated results show that the developed 3D rotating stall stability model gives better stall margin prediction than that by the 2D model.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
Syed Khalid

A three stage compressor test incorporating casing inserts comprised of compound angled honeycomb cells demonstrated up to 10% higher stall margin than circumferential grooves casing treatment. This is attributed to effective tip flow energization resulting from the unsteady flow induced in and out of the cells as the blade tip sweeps by the cell openings. The rationale for selecting the cell inclination angles both relative to the normal and the tangential directions is discussed. The design intent of the cell orientation is to induce a high cell exit velocity as well as to impart a degree of flow alignment to the injected jets. A first order calculation of cell exit velocity variation based on the cell pressure/volume dynamics is indicative of unsteady blowing which is theorized to effectively mix the tip suction side flow and to enhance the tip flow streamwise momentum. This theory is partially substantiated by the presented compressor test results showing improved radial total pressure profiles, stage characteristics, and stall margin. Since a few unhealthy stages of a multi-stage compressor could make it stall prone, casing treatment of those weak stages could dramatically increase stall margin with negligible impact on overall adiabatic efficiency. In addition to the aerodynamic effectiveness, the mechanical suitability of this casing treatment to multistage compressors, based on its demonstrated abradability and packageability, is discussed.


Author(s):  
I. N. Egorov ◽  
G. V. Kretinin ◽  
I. A. Leshchenko

A multicriteria optimization methodology has been discussed to determine time control laws of advanced aircraft gas turbine engines of complex structure. The resulting optimum control laws ensure top improvement of several defined power plant effectiveness criteria in the system of aircraft at transient work modes. The power plant work quality increase effect is attained due to its work process adaptation for numerous requirements from the side of the aircraft. The proposed methodology effectiveness has been shown by the example of optimizing problem solving to determine time control laws of variable elements of short take-off and vertical landing aircraft power plant.


Author(s):  
Kenneth W. Van Treuren ◽  
D. Neal Barlow ◽  
William H. Heiser ◽  
Matthew J. Wagner ◽  
Nelson H. Forster

The liquid oil lubrication system of current aircraft jet engines accounts for approximately 10–15% of the total weight of the engine. It has long been a goal of the aircraft gas turbine industry to reduce this weight. Vapor-Phase Lubrication (VPL) is a promising technology to eliminate liquid oil lubrication. The current investigation resulted in the first gas turbine to operate in the absence of conventional liquid lubrication. A phosphate ester, commercially known as DURAD 620B, was chosen for the test. Extensive research at Wright Laboratory demonstrated that this lubricant could reliably lubricate railing element bearings in the gas turbine engine environment. The Allison T63 engine was selected as the test vehicle because of its small size and bearing configuration. Specifically, VPL was evaluated in the number eight bearing because it is located in a relatively hot environment, in line with the combustor discharge, and it can be isolated from the other bearings and the liquid lubrication system. The bearing was fully instrumented and its performance with standard oil lubrication was documented. Results of this baseline study were used to develop a thermodynamic model to predict the bearing temperature with VPL. The engine was then operated at a ground idle condition with VPL with the lubricant misted into the #8 bearing at 13 ml/hr. The bearing temperature stabilized at 283°C within 10 minutes. Engine operation was continued successfully for a total of one hour. No abnormal wear of the rolling contact surfaces was found when the bearing was later examined. Bearing temperatures after engine shutdown indicated the bearing had reached thermodynamic equilibrium with its surroundings during the test. After shutdown bearing temperatures steadily decreased without the soakback effect seen after shutdown in standard lubricated bearings. In contrast, the oil lubricated bearing ran at a considerably lower operating temperature (83°C) and was significantly heated by its surroundings after engine shutdown. In the baseline tests, the final bearing temperatures never reached that of the operating VPL system.


Author(s):  
R.-D. Baier ◽  
W. Koschel ◽  
K.-D. Broichhausen ◽  
G. Fritsch

The design of discrete film cooling holes for gas turbine airfoil applications is governed by a number of parameters influencing both their aerodynamic and thermal behaviour. This numerical and experimental study focuses on the marked differences between film cooling holes with combined streamwise and lateral inclination and film cooling holes with streamwise inclination only. The variation in the blowing angle was chosen on a newly defined and physically motivated basis. High resolution low speed experiments on a large scale turbine airfoil gave insights particularly into the intensified mixing process with lateral ejection. The extensive computational study is performed with the aid of a 3D block-structured Navier-Stokes solver incorporating a low-Reynolds-number k-ε turbulence model. Special attention is paid to mesh generation as a precondition for accurate high-resolution results. The downstream temperature fields of the jets show reduced spanwise variations with increasing lateral blowing angle; these variations are quantified for a comprehensive variety of configurations in terms of adiabatic film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document