PIR Regulator Using DTC for DFIG during Unbalanced Grid Voltage Conditions

2014 ◽  
Vol 626 ◽  
pp. 136-140
Author(s):  
A. Ramkumar ◽  
S. Durairaj ◽  
N. Arun

This paper presents a PIR regulator using direct torque control strategy of grid connected wind turbine driven doubly fed induction generators (DFIGs) when the grid voltage is unbalanced. Under the unbalanced grid voltage condition, the stator voltage and current quality is strongly affected due to the negative and distorted components. It will be reducing the performance of other normal loads connected to the DFIG. That control scheme consisting of indirect matrix converter using DTC. To verify the value of the proposed control strategy, simulation results with 500 MVA DFIG topology are presented and discussed in the paper. Finally,the simulation studies are carried out on a 500 MVA wind-turbine driven DFIG system under unbalanced grid voltage conditions. All the results are validated by using PSCAD simulation.

2020 ◽  
Vol 2 (1) ◽  
pp. 17-29
Author(s):  
Hamza Mesai Ahmed ◽  
Youcef Djeriri

This paper presents the active and reactive powers control of a doubly fed induction generator (DFIG) connected to the grid utility and driven by a wind turbine, this machine allowing a large speed variation and so a large range of wind is achieved. Traditionally vector control is introduced to the DFIG control strategies, which decouples DFIG active and reactive powers, and reaches good performances in the wind energy conversion systems (WECS). However, this decoupling is lost if the parameters of the DFIG change. In this direction, a robust control scheme based on the nonlinear input-output linearizing and decoupling control strategy for the rotor side converter (RSC) of the WECS is presented. Simulation results show that the proposed control strategy provides a robust decoupled control and perfect tracking of the generated active and reactive powers of the wind turbine driven DFIG with a low THD rate of the generated currents.


Sign in / Sign up

Export Citation Format

Share Document