induction machines
Recently Published Documents


TOTAL DOCUMENTS

2418
(FIVE YEARS 299)

H-INDEX

75
(FIVE YEARS 7)

Author(s):  
Dániel Bíró ◽  
Franz Diwoky ◽  
Erich Schmidt

Purpose The aim of the paper is to investigate the impacts of simplifications of a reduced-order simulation model of squirrel cage induction machines (SCIMs) by numerical experiments. Design/methodology/approach Design of setups to isolate the main influences on the results of the reduced-order model of SCIMs. Results of time-stepping finite element calculations are used as benchmark. Findings Whereas neglecting eddy current effects and the assumption of a sinusoidal rotor current distribution leads to acceptable deviations in regular inverter operation, the sampling and interpolation of the machine parameters in a two-axis coordinate system considerably deteriorate the model accuracy. Using a polar coordinate system for this purpose is expected to significantly improve the model quality. Originality/value Preparing the ground for a successful, both fast and accurate simulation model of SCIMs as parts of electrified drivetrains.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 577
Author(s):  
Belema P. Alalibo ◽  
Bing Ji ◽  
Wenping Cao

Multiple techniques continue to be simultaneously utilized in the condition monitoring and fault detection of electric machines, as there is still no single technique that provides an all-round solution to fault finding in these machines. Having various machine fault-detection techniques is useful in allowing the ability to combine two or more in a manner that will provide a more comprehensive application-dependent condition-monitoring solution; especially, given the increasing role these machines are expected to play in man’s transition to a more sustainable environment, where many more electric machines will be required. This paper presents a novel non-invasive optical fiber using a stray flux technique for the condition monitoring and fault detection of induction machines. A giant magnetostrictive transducer, made of terfenol-D, was bonded onto a fiber Bragg grating, to form a composite FBG-T sensor, which utilizes the machines’ stray flux to determine the internal condition of the machine. Three machine conditions were investigated: healthy, broken rotor, and short circuit inter-turn fault. A tri-axial auto-data-logging flux meter was used to obtain stray magnetic flux measurements, and the numerical results obtained with LabView were analyzed in MATLAB. The optimal positioning and sensitivity of the FBG-T sensor were found to be transverse and 19.3810 pm/μT, respectively. The experimental results showed that the FBG-T sensor accurately distinguished each of the three machine conditions using a different order of magnitude of Bragg wavelength shifts, with the most severe fault reaching wavelength shifts of hundreds of picometres (pm) compared to the healthy and broken rotor conditions, which were in the low-to-mid-hundred and high-hundred picometre (pm) range, respectively. A fast Fourier transform (FFT) analysis, performed on the measured stray flux, revealed that the spectral content of the stray flux affected the magnetostrictive behavior of the magnetic dipoles of the terfenol-D transducer, which translated into strain on the fiber gratings.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Fengyu Zhang ◽  
David Gerada ◽  
Zeyuan Xu ◽  
Yuling He ◽  
He Zhang ◽  
...  

The laminated rotor Induction Machine (IM), with its simple construction and manufacturing, robustness, ease of control and comparatively lower cost remains by far the most utilized electromechanical energy converter. At very high speeds, traditionally its use is considered to be limited to the previously established operational limits of 2.5 × 105 rpm√kW, beyond which the surface Permanent Magnet (PM) Machine and the solid rotor Induction Machine become the machines available for consideration. The aforesaid limits are derived from the use of classic materials. This paper reviews the recent developments in electrical steels and copper alloys and translates these into the resulting performance entitlement and operational limits through a case study involving a marine application, for which an existing rare-earth PM machine is in use. It is concluded that with novel materials, laminated rotor induction machines can be operated up to 6 × 105 rpm√kW, thus opening the use of the rare-earth free Induction Machine for a wider application range previously limited to PM machines.


Measurement ◽  
2022 ◽  
pp. 110690
Author(s):  
J. Martinez-Roman ◽  
R. Puche-Panadero ◽  
A. Sapena-Bano ◽  
J. Burriel-Valencia ◽  
M. Riera-Guasp ◽  
...  

2021 ◽  
Author(s):  
Julian Kullick ◽  
Christoph Hackl

<div><div><div><div><p>A not yet available look-up table (LUT) based optimal feedforward torque control (OFTC) method for squirrel- cage induction machines (SCIMs) is presented. It is based on: (i) a generic transformer-like machine model in an arbitrarily rotating (d,q)-reference frame, considering nonlinear flux linkages and iron losses in the stator laminations; (ii) machine identification by evaluating steady-state measurements over a grid of (d,q) stator currents, producing frequency-dependent machine maps for e.g. flux linkages, torque, iron resistance and efficiency; and (iii) numerical optimization and extraction of OFTC look- up tables for optimal stator current references depending on reference torque and electrical frequency. In order to increase reproducibility, a feedback temperature controller is employed to keep the stator winding temperature constant. Moreover, throughout the identification, the electrical frequency is kept con- stant (per data set) by adapting the machine speed accordingly using a speed-controlled prime mover; this way the impact of iron losses becomes more balanced than for constant speed operation. The presented measurement results confirm that compared to constant flux operation or scalar V/Hz control, efficiency can be increased particularly in part-load operation by up to 7 %.</p></div></div></div></div>


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 320
Author(s):  
Robert R. Gomes ◽  
Luiz F. Pugliese ◽  
Waner W. A. G. Silva ◽  
Clodualdo V. Sousa ◽  
Guilherme M. Rezende ◽  
...  

Induction machines are widely used in the industry due to their many advantages compared to other industrial machines. This article presents the study and implementation of speed control applied to a Three-phase Induction Machine (MIT) of the squirrel cage type. The induction motor was modeled using the rotor flux in the synchronous reference to design Proportional-Integral (PI) type controllers for the current and velocity control loops. It is the objective of the article also to present in detail the development of converter hardware that comprises the stages of power, acquisition, and conditioning of engine signals. The system was simulated using computational tools and validated using a prototype designed, constructed, and commissioned.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 306
Author(s):  
João Serra ◽  
Imed Jlassi ◽  
Antonio J. Marques Cardoso

Model predictive current control (MPCC) has recently become a viable alternative for multiphase electric drives, because it easily exploits the inherent advantages of multi-phase machines. However, the prediction in MPCC requires a high number of voltage vectors (VVs), being therefore computationally demanding. In that regard, this paper proposes a computationally efficient MPCC of an asymmetrical six-phase induction machine drive (ASIMD) that reduces the number of VVs used for prediction. By using the characteristics of the deadbeat control (DB), the proposed method obtains a reference voltage vector (RVV), where its position will serve as a reference and integrates the MPCC scheme. Only 4 out of 13 predictions are needed to determine the best VV, dramatically reducing the algorithm computation. Experimental results for a six-phase case study compare the standard MPCC with the suggested method, confirming that deadbeat model predictive current control (DB-MPCC) shows that the execution time can be shortened by 48.8% and successfully improve the motor performance and efficiency.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7485
Author(s):  
Cláudio de Andrade Lima ◽  
James Cale ◽  
Kamran Eftekhari Shahroudi

The aerospace industry is increasingly transitioning from hydraulic and pneumatic drives to power-electronic based drive systems for reduced weight and maintenance. Electromechanical thrust reverse actuation systems (EM-TRAS) are currently being considered as a replacement for mechanical based TRAS for future aircraft. An EM-TRAS consists of one or more power-electronic drives, electrical motors, and gear-trains that extend/retract mechanical members to produce a drag force that decelerates the aircraft upon landing. The use of a single (“central”) power electronic converter to simultaneously control a set of parallel induction machines is a potentially inexpensive and robust method for implementing EM-TRAS. However, because the electrical motors may experience different shaft torques—arising from differences in wind forces and a flexible nacelle—a method to implement rotor position synchronization in central-converter multi-motor (CCMM) architectures is needed. This paper introduces a novel method for achieving position synchronization within CCMM architecture by using closed-loop feedback of variable stator resistances in parallel induction machines. The feasibility of the method is demonstrated in several case studies using electromagnetic transient simulation on a set of parallel induction machines experiencing different load torque conditions, with the central converter implementing both voltage-based and current-based primary control strategies. The key result of the paper is that the CCMM architecture with proposed feedback control strategy is shown in these case studies to dynamically drive the position synchronization error to zero. The initial findings indicate that the CCMM architecture with induction motors may be a viable option for implementing EM-TRAS in future aircraft.


Sign in / Sign up

Export Citation Format

Share Document