torque control strategy
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 51)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hayder F.N. Al-Shuka ◽  
Burkhard Corves ◽  
Ehab N. Abbas

Abstract This work deals with control of rigid link robotic manipulators provided with flexible joints. Due to presence of flexible joint dynamics, additional degrees of freedom and underactuation are developed that would complicate the control design. Besides, model uncertainties, unmodeled dynamics and disturbances should be considered in robot modeling and control. Therefore, this paper proposes a cascade position-torque control strategy based on function approximation technique (FAT). The key idea is to design two nested loops: 1) an outer position control loop for tracking reference trajectory, and 2) an inner joint torque control loop to track the desired joint torque resulted from the outer position loop. The torque control loop makes the robot system more adaptable and compliant for sudden disturbances. It increases the perception capability for the target robot mechanisms. Adaptive approximation control (AAC) is used as a strong tool for dealing with time-varying uncertain parameters and disturbances. A sliding mode term is easily integrated with control law structure; however, a constraint on feedback gains are established for compensating modeling (approximation) error. The proposed control architecture can be easily used for high degrees of freedom robotic system due to the decentralized behavior of the AAC. A two-link manipulator is used for simulation experiments.The simulated robot is commanded to move from rest to desired step references considering three cases depending on the selected value of the sliding mode time constant. It is shown that selection of a large time constant parameter related to the position loop leads to slow response. Besides, one of the inherent issues associated with the inner torque control is the presence of derivative of desired joint torque that makes the input control abruptly jumping at the beginning of the dynamic response. To end this, an approximation for derivative term of the desired joint torque is established using a low-pass filter with a time constant selected carefully such that a feasible dynamic response is ensured.The results show the effectiveness of the proposed controller.


2021 ◽  
Author(s):  
Hayder F.N. Al-Shuka ◽  
Burkhard Corves ◽  
Ehab N. Abbas

Abstract This work deals with control of rigid link robotic manipulators provided with flexible joints. Due to presence of flexible joint dynamics, additional degrees of freedom and underactuation are developed that would complicate the control design. Besides, model uncertainties, unmodeled dynamics and disturbances should be considered in robot modeling and control. Therefore, this paper proposes a cascade position-torque control strategy based on function approximation technique (FAT). The key idea is to design two nested loops: 1) an outer position control loop for tracking reference trajectory, and 2) an inner joint torque control loop to track the desired joint torque resulted from the outer position loop. The torque control loop makes the robot system more adaptable and compliant for sudden disturbances. It increases the perception capability for the target robot mechanisms. Adaptive approximation control (AAC) is used as a strong tool for dealing with time-varying uncertain parameters and disturbances. A sliding mode term is easily integrated with control law structure; however, a constraint on feedback gains are established for compensating modeling (approximation) error. The proposed control architecture can be easily used for high degrees of freedom robotic system due to the decentralized behavior of the AAC. A two-link manipulator is used for simulation experiments.The simulated robot is commanded to move from rest to desired step references considering three cases depending on the selected value of the sliding mode time constant. It is shown that selection of a large time constant parameter related to the position loop leads to slow response. Besides, one of the inherent issues associated with the inner torque control is the presence of derivative of desired joint torque that makes the input control abruptly jumping at the beginning of the dynamic response. To end this, an approximation for derivative term of the desired joint torque is established using a low-pass filter with a time constant selected carefully such that a feasible dynamic response is ensured.The results show the effectiveness of the proposed controller.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Cunhe Li ◽  
Cunshan Zhang ◽  
Jian Liu ◽  
Dunxin Bian

This paper proposes a high-performance indirect control scheme for torque ripple minimization in the switched reluctance motor (SRM) drive system. Firstly, based on the nonlinear torque-angle characteristic of SRM, a novel torque sharing function is developed to obtain the optimal current profiles such that the torque ripple is minimized with reduced copper losses. Secondly, in order to track current accurately and indirectly achieve high-performance torque control, a robust current controller is derived through the Lyapunov stability theory. The proposed robust current controller not only considers the motor parameter modeling errors but also realizes the fixed frequency current control by introducing the pulse width modulation method. Further, a disturbance-observer-based speed controller is derived to regulate the motor speed accurately, and the load torque is considered an unknown disturbance. The simulations and experiments on a 1.5 kW SRM prototype are carried out to demonstrate the effectiveness of the proposed high-performance indirect torque control strategy. Results verify the superiority of the proposed strategy with respect to the torque ripple suppression, system efficiency, and antidisturbance.


Sign in / Sign up

Export Citation Format

Share Document