Technical and Economic Analysis on Grid-Connected Wind Farm Based on Hybrid Energy Storage System for Active Distribution Network

2014 ◽  
Vol 672-674 ◽  
pp. 274-279
Author(s):  
Yi Feng ◽  
Lei Jun Shao ◽  
Bang Ling Zhang ◽  
Meng Jie Wu ◽  
Yu Pei Shao ◽  
...  

Active distribution network with energy storage system is an important outlet for a mass of distributed renewable energy connected to the grid. In this context, a hybrid energy storage system is proposed based on NaS battery and lithium ion battery, that the former is the main large scale energy storage technology world-widely used and developed and the latter is a flexible way to have both power and energy capacities. The hybrid energy storage system, which takes advantage of the two complementary technologies to provide large power and energy capacities, is chosen to do an evaluation of economical-environmental based on critical excess electricity production (CEEP), CO2 emission, annual total costs calculated on the specific given condition using Energy PLAN software. The result shows that hybrid storage system has strengths in environmental benefits and also can absorb more discarded wind power than single storage system and is a potential way to push forward the application of wind power and even other types of renewable energy resources.

2019 ◽  
Vol 15 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Tiezhou Wu ◽  
Fanchao Ye ◽  
Yuehong Su ◽  
Yubo Wang ◽  
Saffa Riffat

Abstract As the fossil energy crisis and environmental pollution become more and more serious, clean renewable energy becomes the inevitable choice of energy structure adjustment. The power system planning and operation has been greatly influenced by the instability of the power output of distributed renewable energy systems such as solar energy and wind energy. The hybrid energy storage system composed of accumulator and supercapacitor can solve the above problems. Based on the analysis of the energy storage requirements for the stable operation of the DC microgrid, battery–supercapacitor cascade approach is adopted to form hybrid energy storage system, in a single hybrid energy storage subsystem for battery and supercapacitor and in the microgrid system of different hybrid energy storage subsystem, respectively, and puts forward the corresponding power allocation method to realize the smooth control of the battery current, to reduce the battery charge and discharge times, to prolong the service life of battery and to improve the running stability of the microgrid.


Sign in / Sign up

Export Citation Format

Share Document